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General Foreword

The research reported in this paper was funded by the Safety Regulation Group of the UK
Civil Aviation Authority and Shell Aircraft Limited, and was performed by MJA Dynamics
Limited. The work forms part of the Authority’s helicopter HUMS rescarch programme
which was instigated in response to the recommendations of the Review of Helicopter
Airworthiness (HARP Report — CAP 491), and the subsequent recommendations of the
Report of the Working Group on Helicopter Health Monitoring (CAA Paper 85012).

The issue of the intelligent management of HUMS data was identified for attention in
response to concerns over the depth and effectiveness with which individuals are able to
examine the large quantities of HUMS data being generated by fleets of helicopters in-
service. Successes achieved in other applications had demonstrated the potential of artificial
intelligence techniques to assist with such problems, and the Authority wished to establish
the effectiveness of the technology in relation to HUMS data. Accordingly, the following two
studies were instigated:

I An initial study, started in 1993, was performed to demonstrate the feasibility and
performance of a computer-based Intelligent Data Management process, comprising
unsupervised machine learning, supervised machine learning, and data pre-processing.
The demonstration was performed using Spectrometric Oil Analysis, HUMS and Flight
Data Recorder data from in-service helicopters.

I An additional study was subsequentdy commissioned in 1995 to demonstrate the
performance of Artificial Intelligence fault detection techniques using data from two
Sikorsky S61 main rotor gearbox seeded defect tests.

This paper contains unabridged versions of the corresponding MJA Dynamics Ltd reports
MJAD/R/224/98 and MJAD/R/219/97 respectively.

It is the view of the CAA that the above studies have clearly demonstrated the potentially
significant benefits of the application of advanced analysis techniques to HUMS data. The
vast quantitics of data available to characterise serviceable components and/or systems
should enable unsupervised machine learning to be used to particularly good effect. While
success with supervised machine learning was also achieved, the absence of large numbers
of examples of all possible failure conditions is likely to always limit effectiveness.

The Authority believes that, initially at least, this technology should only be used in
combination with existing analysis techniques, making use of unsupervised machine
learning to identify data warranting detailed investigation by the analyst. It is anticipated
that further development of the system to address the practical issues associated with the
routine every day use of the technology will be required. The Authority considers that this
would best be achieved by the contractor working in conjunction with one or more
helicopter operators having significant experience of the use of HUMS.
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Summary

The work presented in this report was performed under the Civil Aviation Authority (CAA)
contract 7D/S/1128. The aim of the contract was to demonstrate the feasibility and
performance of a computer based Intelligent Data Management (IDM) process. The IDM
process should detect, by wunsupervised learning methods, abnormal patterns in large
volumes of HUMS data even when the underlying cause is unknown. The process should
also assimilate the relationships between mechanical faults and abnormalities in the data
using supervised learning methods. Other factors such as atypical operational conditions or
equipment noise, can also induce abnormal data patterns which can trigger false alarms. By
using data pre-processing mechanisms, the IDM process attempts to discriminate between
the abnormal data patterns induced by such factors and those induced by faults. A HUMS
IDM system should provide a framework that integrates these three intelligent processes,
namely unsupervised learning, supervised learning and data pre-processing.

The benefits of unsupervised learning were demonstrated using CAA  supplied
Spectrometric Oil Analysis Programme (SOAP) data. The demonstration adhered to the
following generic steps, which closely reflect what would happen in-service:

Step 1: Identify and apply initial data pre-processing requirements, i.c. how the data is
conditioned before being operated upon by the unsupervised machine learning
process.

Step 2: Identify atypical data patterns using the unsupervised machine learning core
algorithm — causce may be unknown.

Step s If the atypical data patterns persist, trigger an inspection in order to identify the
causc.

Step 4: Utilise the identified cause and unsupervised machine learning techniques to

determine optimum data pre-processing  requirements which  consistently
highlight the underlying cause.

For Step 1, clement concentration levels were selected which were consistently present in
the measurement samples and exhibited variability with time. The elements which met these
criteria were Iron (FE), Silver (AG), Aluminium (AL) and Magnesium (MG). Step 2 identified
two gearboxes which were associated with atypical measurement samples, namely serial
numbers M186 and M361. Whilst nothing untoward was reported on M361, gearbox M186
had suffered spalling of a mast bearing (Step 3). The data pre-processing refinement (Step 4)
revealed that correlated noise within a measurement sample could be mitigated by dividing
concentration levels by one selected concentration level, and uncorrelated noise between
samples better managed by the implementation of a moving average. Employing the refined
pre-processing, two further gearboxes were consistently exhibiting atypical characteristics,
namely serial numbers M468 and M285. Whilst the former gearbox was associated with a
high SOAP sampling frequency (indicative of engineering staff concern), a strip report on
M285 revealed that spalling of an epicyclic bearing had occurred. The demonstration of the
four steps in the machine learning process has shown that atypical measurement patterns
may be identified even when the cause is unknown and, once the measurement/cause
relationship is isolated, can be used to refine the selection of measurements and their
conditioning. Significantly, the analysis process presented is independent of what is being
measured and therefore will be of fundamental importance in the interpretation of HUMS
data, which contains many different types of measurements from a variety of sensors.
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The importance of data pre-processing was demonstrated by utilising Flight Data Recorder
(FDR) parameters in the context of helicopter HUMS data management and analysis. Model-
based and statistical data pre-processing were used to mitigate operational influences and
noise effects on measured airframe vibration. This process, which has been called
normalisation, produced vibration signatures which only reflected the mechanical health of
the helicopter. The demonstration adhered to the following generic steps:

Sepis Define a method to filter out the noise which can be correlated with factors
such as individual helicopter effects or age but can not be definitely estimated.
This type of noise is called the correlated noise.

Step 2: Establish a math-model to pre-process the FDR parameters so that the vibration
induced by operational conditions can be adequately simulated and thus
climinated.

Step 3: Train a simulation system so that the system can predict the vibration amplitude
given the flight parameters.

Step 4: Three criteria for success are monitored and, if satisfied, the system will be

accepted; otherwise, the normalisation process will be refined by re-working

steps 1, 2 and/or 3. The criteria are 1. the correlation between the measured

and predicted vibration is high and 2. the probability distribution of the

normalised vibration amplitude of healthy helicopters is peaky at a central value

defining the normal vibration and 3. the system can predict the vibration of test

data from FDR parameters with the same accuracy achieved during training.
Step 5: Filter the random noise.

For Step 1, a simple statistical model was established to filter the correlated noise. The
statistical model was based on temporal monitoring of the average vibration levels of each
helicopter. For Step 2, a simplifiecd math-model which related the vibration to the Mach
number at the tip of the advancing rotor blade and the air density was initially considered.
For Step 3, a Multi-Variate Regression (MVR) analysis was used to test the non-linear
modelling capability of the model-based pre-processing of Step 2. For Step 4, the correlation
cocfficient between the measured and predicted 4R lateral vibration of three Super Puma
MK I helicopters was evaluated and found to be low (0.17). This triggered the refinement
process which started by establishing a detailed math model for effective pre-processing.
The model utilised 12 FDR parameters to simulate the vibration. The correlation coefficients
in this case were 0.78 and 0.67 for lateral and vertical vibration respectively. The probability
distributions as well as the generalisation capability of the system were found to be
satisfactory. A further normalisation refinement was achieved by filtering the uncorrelated
noise. For Step 5, a formula that can attenuate the random noise was presented and it was
established that the method can be optimised such that only noise and not health states are
attenuated.

The bencfits of supervised machine learning were demonstrated using 133 SOAP
samples taken from 10 gearboxes fitted on 6 Super Puma helicopters. Eight samples were
related to a mast bearing spalling fault. This fault had been indicated by a magnetic chip
detector prior to the head replacement. Nine samples were related to an epicyclic bearing
spalling. With the cause known, a Multi-Variate Regression (MVR) system and an Artificial
Neural Network (ANN) were trained using 58, 4 and 5 SOAP samples relating to normal
bearings, mast bearing spalling and epicyclic bearing spalling respectively. The diagnostic
capabilities of the systems were tested by presenting the effects (measurements) which were
not used for training to the systems and comparing the predictions (mechanical state) with
the actual causes; 100% of the normal bearing samples, 100% of the epicyclic bearing fault
samples and 75% of the mast bearing fault samples were correctly identified. Two mast
bearing samples were classified as normal. Nevertheless, the correctly identified samples
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indicated that the supervised systems could have detected the mast bearing fault 170 hours
prior to the magnetic plug.

The performance of an IDM system was demonstrated by identifying its ability to recognise
previously reported and unreported features in HUMS data. For the purpose of this
demonstration, 5585 data downloads from Bristow Helicopters Limited HUMS were
analysed. The data consisted of vertical and lateral airframe vibration harmonics along with
main rotor track and lag measurements from 23 Super Puma MK I helicopters. The vibration
harmonics were extracted at multiples of the main rotor frequency. The data was used to
establish and refine an IDM process. The process was targeted at main rotor non-adjustable
faults with particular reference to frequency adaptor faults. These faults manifest themselves
through features evaluated from high and low loading conditions. Only climb, descent,
cruise and Minimum Pitch on Ground (MPOG) measurements were therefore considered.
The data were filtered to attenuate the random noise, and the influence of main rotor
adjustable faults was removed. Diagnostic features were extracted from the residual
vibration and blade displacements. The features were ratios between vibration amplitudes,
differences between phase angles and predicted stiffness values of blades’ frequency
adaptors. The IDM process was partially refined using a mathematical model, features
selection and supervised classification.

Another data set was pre-processed and used to test the performance of the refined process.
The data consisted of 1812 downloads of which 1412 downloads did not overlap with the
first data set. The overlapped data was only included to ensure smooth filtered results and
was not used in testing. As a result of clustering the test data, an alarm was triggered
regarding the G-BLXR helicopter and a query was raised regarding the G-TIGT helicopter.
The IDM process suggested that G-BLXR had a main rotor non-adjustable fault which was
highly likely to be a frequency adaptor fault. The IDM analysis also reported a signature
which had not been reported before. This signature indicated that the effect of the fault was
cquivalent to a difference in the flap-wise stiffness between two opposite blades. Regarding
G-TIGT, the results of the IDM analysis indicated that maintenance actions could have been
carried out and not recorded in the HUMS database. The observations of the line engineer
regarding the two helicopters substantiated, to some extent, the IDM analysis. G-BLXR was
under heavy maintenance and the Data Acquisition and Processing Unit (DAPU) of G-TIGT
had been replaced. The line engineer also indicated his concern regarding G-TIGO. The
cluster analysis did not identify this as an atypical helicopter. This was attributed to the
absence of valid data records; a valid data record is a record that contains information
regarding the four operational conditions required for diagnosis.

This scction of the project demonstrated the importance of an IDM framework which would
facilitate interactions between pre-processing, unsupervised learning and supervised
learning. Central to the success of an IDM system are the refinement processes which should
be based on realistic mathematical models, representative extracted features, enhanced
supervised and unsupervised algorithms, and engineering knowledge from in-service
experience and HUMS data. It is important to appreciate that the IDM process described in
this report was developed for demonstration purposes. A practical IDM system for main
rotor non-adjustable faults should be based on the framework described in this report. The
system should not only possess the benefits of the IDM processes, but the software should
also be capable of accommodating the refinements without the need for re-designing or re-
certifying the system. In order to maximise the benefits of the system, a dedicated
programme should consider using a large data set and concentrate on the refinement issues.
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Glossary

Ag Silver

Al Aluminium

ANN Artificial Neural Network

ART Adaptive Resonance Theory

DAPU Data Acquisition and Processing Unit
CAA The Civil Aviation Authority

Cr Chromium

Cu Copper

FDR Flight Data Recorder

Ie Iron

HUMS Helicopter Health and Usage Monitoring Systems
IDM Intelligent Data Management

LMS Least Mean Square

Mg Magnesium

MPOG Minimum Pitch angle On Ground
MVR Multi Variate Regression

Ni Nickel

PCR Principal Component Regression
ppm parts per million

RTB Rotor Track and Balance

Si Silicon

SOAP Spectrometric Oil Analysis Programme
Zi Zinc
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INTRODUCTION

Helicopter Health and Usage Monitoring Systems (HUMS) will typically generate in
excess of 1 megabyte of data per flight, which will be down-loaded to ground station
computers for further analysis. Such vast quantities of data cannot be effectively
examined by individuals; symptoms associated with developing mechanical faults
could be overlooked. A need therefore exists to automate an intelligent scanning
process of the data and, in particular, report pattern abnormalities even when the
underlying cause is unknown. An intelligent process must be able to discriminate
between the vibration signatures induced by atypical operational conditions and
those induced by faults. In addition, a supervised process is required to assimilate
the relationships between causes (mechanical defects) and effects (symptoms as
indicated by HUMS measurements).

The work presented in this report is performed under the Civil Aviation Authority
(CAA) contract 7D/S/1128, and is driven by five objectives, namely:

objective 1:  demonstrate the benefits of unsupervised machine learning techniques
by searching for patterns associated with bearing defects in
spectrometric oil analysis SOAP data.

objective 2:  demonstrate the diagnostic importance of data pre-processing by
utilising FDR data combined with HUMS vibration data.

objective 3:  demonstrate the benefits of supervised machine learning techniques by
making use of an Artificial Neural Network (ANN) operating on HUMS
data.

objective 4:  demonstrate the feasibility of an Intelligent Data Management (IDM)
system by integrating data pre-processing with unsupervised and
supervised machine learning facilities, and interfacing the system
directly to a HUMS ground station database.

objective 5:  demonstrate the performance of an IDM system by establishing its
ability to recognise previously reported and unreported features in
HUMS data, which may be used to diagnose mechanical defects.

The ultimate objective of the contract is therefore to demonstrate the feasibility and
performance of a computer based Intelligent Data Management (IDM) process
operating on HUMS data.

The Intelligent Data Management Process

A practical IDM system needs to offer a framework that is capable of organising
intelligent interactions between data pre-processing, unsupervised learning and
supervised learning.

Unsupervised Learning

Unsupervised learning is a process that classifics objects by natural association
according to some similarity measure. If the attributes of objects (e.g. between heavy
and light, far and near) are quantified and geometrically represented, the points
close to cach other are grouped together into a cluster. The process is independent
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of any prior knowledge or data type. Unsupervised identification of clusters through
hierarchical trees, density search and/or fuzzy rules can identify the structures within
a data sct. A hicrarchical tree is formed such that each cluster in the top layer
contains one object (one entity) and the root cluster contains all entities. A
hierarchical agglomerative technique starts from the top clusters and fuses the two
clusters which are most similar. Starting from the root of the tree, a hierarchical
divisive method splits the root cluster into two subsets. Density search techniques
form clusters by identifying dense concentrations of objects (data points). Fuzzy
techniques utilise a set of fuzzy rules which can generally be considered as non-
linear surfaces (equations) that partition the entities into clusters. More than one
technique can be used and optimisation can be performed in order to enhance the
unsupervised analysis. A cluster in a data set can have a compact or a connected (a
scgregate) form. A compact cluster is a collection of similar objects (objects close to
cach other in the geometrical representation). Whilst the neighbours in a connected
cluster are similar, there exists two objects in the cluster which are relatively
dissimilar. An example of a connected cluster is a collection of dense points along a
straight line where the first point and the last point are far apart. A natural cluster is
cither a compact or a connected cluster that contains a relatively high density
collection of objects and is separated from other clusters by a relatively low density
collection of objects. It is possible that two clusters can overlap.

The results of a clustering algorithm can be very sensitive to the initial data statistics.
In other words, the boundary of the clusters can be significantly modified by adding
data points that have different statistical properties to those of the initial data set.
Most of the unsupervised learning techniques can uncover compact, spherical
clusters and fail to uncover connected clusters. Nevertheless, to a large extent, a
cluster technique can be optimised to unveil a required cluster type, but this requires
a prior knowledge of objects’ structures in the data. In practice it is difficult to
determine the optimum number of clusters within a data set. The results of the
hierarchical algorithms can be sensitive to noise and more than one solution can be
identified by a density secking method; in other words, the solution obtained can be
a local optimum and not a global optimum. The initial choice of objects’ attributes
defines the frame of reference within which the clusters relevant to these attributes
can only be identified.

Supervised Learning

Supervised learning relies on a priori knowledge and uses a pre-defined set of data
to solve a specific problem; this process is termed ‘training’. The training data
consists of input-output pairs; input patterns and associated desired output patterns.
The learning capability of any supervised system is accomplished through its
adaptive weights (coefficients). Training entails allowing the supervised system to
adjust its weights such that the required mapping between the input and output can
be reproduced. Only after training can the supervised process solve the required
problem. Supervised learning can establish relationships between output causes
(mechanical faults) and input effects (measurements), even when these relationships
can not be expressed explicitly. Most of the learning algorithms which are used to
adjust the weights stem from the well recognised error minimisation rule known as
the Least Mean Square (LMS). Multi Variate Regression (MVR) analysis tools are
lincar computational tools that perform a single-shot error minimisation. Artificial
Necural Networks (ANNs) can be regarded as non-lincar computational tools that
perform recursive error minimisation.
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Data Pre-processing

Central to the success of the IDM system is data pre-processing. An established
definition of this task is not explicitly available in the published literature known to
the author. This can be attributed to the fact that pre-processing is largely dependent
on the problem under consideration. In engineering applications, the task is often
driven by the laws of physics. Nevertheless, pre-processing can be classified under
two main headings: application-specific and generic.

The former concentrates on extracting features from measurements. For example,
Fourier analysis can be applied to extract a feature such as a frequency amplitude of
interest. Another feature can be extracted by combining a set of measurements (or a
set of features) using the underlying laws of physics. A required signature in a
feature can be isolated and extracted by implementing appropriate mathematical
models where required. For example the influence of operational effects can be
removed from a set of features. In this case, the clusters signify other aspects such as
mechanical health or age effects. The extracted features must provide an adequate
description of the required phenomena. The seclection of a set of features
appropriate to a particular phenomenon is an application specific process. For
example, the colour of a vehicle can only be a significant feature to some of the
marketing aspects and, the harmonics extracted at multiples of the til rotor
frequency are generally irrelevant to classifying main rotor faults.

IDM systems can also significantly benefit from generic pre-processors. Examples of
such pre-processors are as follows:

* Identify cach individual object which is described by the measurements (e.g.
identify cach individual helicopter or helicopter component).

*  Evaluate the probability distribution of each extracted feature.
*  Apply linear filters (e.g. calculate moving averages to attenuate noise effects).

*  Monitor the trend of the probability distribution with time for cach individual
object.

. When appropriate, normalise individual object effects.

¢ Evaluate the correlation between various features.

¢ Identify a sct of independent features.

* Identify the principal, orthogonal components of the independent features.

The ranges of two features can be significantly different because of the units (or
scales) which are used to describe cach feature. Whilst generic pre-processing can
be targeted at removing scale effects and fusing two different data types, application
dependent feature weights can be introduced to emphasise the importance of a

particular feature.

The sclection of features and their weights are largely application dependent
processes. However, generic parts of these processes can be identified and
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flying hours. The oil samples were taken from a self scaling chamber which allows
for removal and inspection of a magnetic chip detector. The spectrometric analysis
was performed by Spectro Laboratories, which delivers a breakdown of the elements
in the oil to less than one part per million. In all, 344 samples where analysed. MJAD
was supplied with records describing the analysis of 138 oil samples, covering 11
gearboxes. Tables 2.1 and 2.2 present the details supplied.

Unsupervised Machine Learning

Unsupervised machine learning can take many forms. For this report, emphasis is
placed on a geometrical analysis approach. In essence, each measurement is
considered as a dimension in space. A familiar representation is the two dimensional
(xy) graph. By plotting points on such a graph, measurement patterns or clusters
may be discernible. From a mathematical view point, although totally abstract to the
reader, the number of dimensions is unlimited. For n measurements an equivalent n
dimensional measurement space can be constructed. The thrust of unsupervised
machine learning is to isolate discernible data clusters in this multidimensional
space.

Generally the population of measurement samples in cach data cluster will be
different. Clusters with the majority of measurement samples are considered ‘typical’.
From a mechanical diagnostic viewpoint, clusters with smaller populations merit
particular attention as they are in some way atypical from the norm.

Unsupervised Machine Learning Process

Figure 2.1 presents the process (i.e. independent of the measurements) which
closely reflects what would happen in-service |Reference 1.

Section 2.2 describes cach step of this process. DEFINE DATA PRE-PROCESSING
REQUIREMENTS
1

IDENTIFY DATA CLUSTERS
1

| % | MEASUREMENT SAMPLES PERSISTENTLY
REFINE DATA PRE- FALL IN ATYPICAL DATA CLUSTERS
PROCESSING GUIDED 1
BY MODEL BASED TRIGGER INSPECTION IN ORDER
REASONING TO IDENTIFY ITHE CAUSE
[ —

Fig.2.1 Unsupervised machine learning process

Demonstration of Unsupervised Machine Learning

Defining Data Pre-processing Requirements

DEFINE DATA PRE-PROCESSING
REQUIREMENTS

1

The first step in the unsupervised machine learning

process is to establish how the measurements will be conditioned. For example, a
vibration signature may be signal averaged, Fourier Transformed to the frequency
domain, particular spectral lines removed, Inverse Fourier Transformed back to the
time domain and/or statistical parameters such as kurtosis determined. In practice,
any number of parameters or even the whole signature may be presented as input to
the subscequent clustering analysis.
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The pre-processing criteria are typically driven by extracting features in the
measurements which are sensitive to fault conditions and, with reference to the
machine learning process, offer maximum separability from a healthy mechanical
state.

Often prior knowledge of exactly what fault conditions or failure modes that can
develop is not available, so the pre-processing concentrates on estimating which
features in the measurements will offer the potential of separating mechanical fault
symptoms from typical measurement patterns.

The particular measurement set used for demonstration purposes was SOAP data.
Typically, the quantity of cach measurable element in the oil is expressed in parts
per million (ppm), where one ppm is equivalent to one milligram per litre of oil. The
measured concentration may be described as being composed of the following
terms:

* The actual concentration at any time t (the sample point), assuming no oil
leakage, oil addition, contamination and so on. Generally, an upward trend
with time would be expected.

b A non-deterministic error (stochastic noise) on the measured concentration,
which can be introduced by contamination, spectrometer inaccuracies and so
on.

* A term which describes the effect on the measurement caused by changes in oil
volume - oil top-ups, drain and flush etc.

A further consideration is: ‘do the measurements offer visibility of developing
mechanical defects? In the case of the CAA supplied SOAP data, information on
changes to the oil volume is absent and therefore casts doubt on whether raw
concentration levels could be used as a means to provide robust diagnostics.

The actual SOAP data consisted of 138 SOAP samples taken from 11 gearboxes. The
ppm values covered Iron (Fe), Chromium (Cr), Aluminium (Al), Copper (Cu), Silver
(Ag), Nickel (Ni), Silicon (Si), Magnesium (Mg) and Zinc (Zi). For the data supplied,
four elements namely Cr, Ni, Si and Zi in the majority of cases could not be
quantified in ppm (ie, the elements were effectively absent in the oil). A fifth
clement, namely Cu had a ppm measurement which was essentially ‘binary’ in
nature, oscillating between either 1 or 2 ppm across the samples. With a pronounced
absence of measurement patterns in these elements, it would suffice to set simple
threshold criteria as a means to trigger a warning,.

Of the remaining elements, Fe is the main constituent of gears and bearings. Al is the
main constituent of the gearbox casing and could indicate the occurrence of bearing
track slip or casing corrosion. Ag is used in plating material on bearing cages and
could therefore give the carliest sign of wear or damage to bearings, in particular the
cage.

Initial pre-processing was therefore limited to element selection, which included Fe,
Al, Ag and Mg. The last clement, Magnesium, was included because it exhibited
pattern changes and therefore may contain useful diagnostic information.
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Cluster analysis

Cluster analysis is performed by searching
for regions in the measurement space
where data ‘groupings’ reside. In essence,
the analysis locates an axis which is
directed along the line of greatest
variance in the data. By establishing a
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TO IDENTIFY THE CAUSE
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further axis at right angles to the axis of ‘greatest variance’ at the geometrical mid-
point in the data, two regions or clusters are isolated. The variance in each cluster is
next checked and, if greater than a prescribed threshold, further clusters are isolated
by following the same procedure. For each cluster the geometrical centre is
determined and, if the distance between two cluster centres is less than a prescribed
value, the clusters are merged. The variance threshold and distance term were set
based on experience, and remained constant throughout the analysis.

Cluster analysis of the raw concentration levels of Fe, Mg, Al and Ag revealed a

number of small clusters. Ordering the clusters with reference to the number of

SOAP samples within each cluster (i.c. the highest priority given to the cluster with
the smallest number of samples), gearbox M186 fell into the first three clusters, each
containing one sample. Gearbox M361 occupied the forth cluster, which contained 2
samples. Further samples from M361 also fell into the fifth cluster (see Table 2.3 for

details).

Samples which persistently fall into minority clusters will trigger investigative
actions. The number of samples that constitute persistent presence in minority

clusters can be optimised by considering the sampling rate, the total number of

samples and the failure mode (specially the growth rates of possible defects).
Persistent presence can be also evaluated by monitoring the ratio between the

number of gearbox samples within minority clusters and the total number of

samples. Nevertheless, at this stage of the process, two simple criteria were used as a
means to decide on what action to take. First, at least three samples from a gearbox
need to fall into minority clusters before any action is taken. Second, if no fault is
associated with samples for such a gearbox falling into minority clusters, the
refinement stage will be initiated (see Section 2.2.4).

Identify Causes of Atypical Measurements

A strip report of gearbox M186 revealed
spalling of a mast bearing, which
constitutes a potential cause for SOAP
samples from this gearbox falling into
minority  clusters. Nothing untoward
could be associated with gearbox M361
and, following the criteria cited in the
previous section, no further investigative
actions would therefore be triggered.
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Refining the Data Pre-processing Requirements

Armed with a known DEFINE DATA PRE-PROCESSING
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that cause. For the more
mathematically orientated reader, Appendix A presents salient math formulations
which were used to establish data pre-processing refinements, the descriptions of
which follow.

Rewurning to the problems of noise contamination, first consider any correlated noise
that may exist between measurements within a sample. This, for example, may be
caused by unreported changes to the oil volume. Such a change can be assumed to
effect each element in a similar way and therefore, dividing one element by another
should mitigate this effect. The ‘normalising’ element should be selected with some
care as it should largely reflect changes in oil volume and not other ‘contaminating’
influences (e.g., Fe from other tools, Si from sand ingestion etc.). Of the four
clements used in the initial analysis, Mg was chosen as the normalising element.

Second, suppression of further uncorrelated noise between samples could be
realised by implementing a moving average rather than using individual
measurements.

Combined with these pre-processing techniques, additional features such as ‘wear’
rates were considered worth adding to the analysis. The wear rate definition for an
clement is given by the difference between the present and previous concentration
levels, divided by the elapsed time in flight hours. Without information on changes
to the oil it was assumed that concentration levels would not go down and therefore
it was proposed that a ‘corrected’ wear rate could also be computed. That is,
negative or zero wear rates, if found, were set to the previously calculated value.

In summary therefore, the following pre-processing options were considered in
order to establish whether additional discriminatory capability could be realised:

* Divide (normalisc) element concentrations by a reference element
concentration.

¢ Implement a moving average on the measured concentration levels .

> Compute wear rates.

Correct wear rates such that negative or zero values are set to the previously

calculated value.

In addition, statistical pre-processing options were also considered. These were
scaling of data, mean centring and unit vectoring. Scaling of the data simply divides
a scries of elemental measurements by their respective standard deviations, whilst
mean centring subtracts the mean of an element’s measurements from every
measurement sample for that clement. Finally, unit vectoring reduces every
measurement in a sample to a component of a unit vector — the direction of the
vector now being the discriminant.
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Whilst numerous runs with different pre-processing options were undertaken, the
best two runs used the following as input parameters to the cluster analysis routine:

*  Average concentration levels of Fe, Al and Ag, normalised by Mg.
*  Average wear rates of Fe and Mg

Note that average values are based on a simple moving average calculation, where
the present plus four previous measurements are used to compute the average.

Notwithstanding the quality of the data and the limited information available, the
second run was notable because repeated SOAP samples from particular gearboxes
fell into a minority cluster. In particular, the first 5 minority clusters contained 15
successive samples from gearbox M468. Samples from no other gearbox fell into
these clusters. Further information on this gearbox was requested. No mechanical
defects were reported, although the SOAP sampling rate had increased which may
indicate engineering staff concern over this gearbox. The next minority cluster
contained 7 samples from one gearbox, namely M285. Request for information on
this gearbox revealed that an epicyclic bearing had spalled. This minority cluster also
contained 6 and 5 samples from gearboxes M186 and M361 respectively.

Using the two known fault conditions associated with gearboxes M186 and M285, a
full series of different pre-processing options were analysed in a quantifiable
manner. This is achieved by using quality (of discrimination) curves. Figures 2.2 to
2.5 are typical examples of quality curves. The X’ axis represents the number of
SOAP samples, where the samples nearest the origin correspond to samples
associated with the smallest (in population terms) clusters. The ‘y’ axis represents the
number of fault cases found [Reference 2|. If the assumption that measurement
samples which fall into minority clusters have a higher probability of being
associated with mechanical defects, a one to one correspondence between the x and
y values close to the origin would be expected.
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The magnetic chip detector indicated the M186 fault a few hours prior to 6794.35
flying hours. With reference to ‘fault’ measurement samples it has been assumed that
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the SOAP measurements from the gearbox M186 prior to 6794.35 flying hours and all
available measurements from the gearbox M285 fall into this category. In all, eight
and ninc SOAP samples were associated with gearboxes M186 and M285
respectively. Referring to Table 2.4 and the flying hours (TIME) of Table 2.1, it can
be scen that the cluster analysis indicated the M186 fault about 150 to 230 hours
before the magnetic chip detector. The cluster analysis also indicated the M285 fault
at its assumed ecarly stage of development.

Figure 2.2 presents quality curves where Fe, Mg, Al and Ag were used as input. A
reference line (annotated ‘random selection”) is plotted for comparative purposes,
which assumes that no relevance is attached to cluster analysis, and therefore fault
related measurement samples will be randomly distributed throughout all clusters.
Quality curves which lie above the reference line and exhibit a steeper gradient are
diagnostically significant. When the quality curve lies parallel to or has a shallower
gradient than the reference line, its diagnostic impact is lost. Typically, this would be
expected away from the origin, since measurement samples in this region (as
indicated on the ‘X’ axis) fall into majority clusters which should represent
mechanical health. Note that raw input (concentrations without pre-processing) and
scaled (concentrations normalised by standard deviations) showed some promise in
the smallest clusters only.

Figure 2.3 presents quality curves associated with wear rates for Fe and Mg. In
particular, two curves are displayed; the filtered curve exploits a moving average
(average based on present concentration plus four previous values), whilst the
sccond curve also applies a correction factor. This correction factor attempts to
mitigate the effect of changes to the oil condition/volume, details of which were not
recorded. The correction factor assumed that some positive change in an element’s
concentration level will occur between SOAP samples; negative or zero wear rates
being reset to their previously calculated value. These curves, when compared with
the curves in Figure 2.2, show additional promise.

Figure 2.4 details ‘normalised’ concentration levels — concentrations are divided by
the concentration level of a selected element. In this case, Fe, Al and Ag are
normalised by Mg. The results of the application of the moving average is annotated
‘filtered-normalised’.  Significant improvements over the ‘random selection’ line
indicate that normalisation has particular merit.
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Finally, Figure 2.5 presents Fe, Al and Ag normalised by Mg and the same elements
centred with respect to Mg (e.g. Fe-Mg etc.). It will be noted that in all cases the
curves indicate that measurement samples are present which are not known to be
fault related. The reasons for these occurrences can include measurement error
associated with the spectrometer, sample contamination and so on. As a final
refinement, the ‘outlying removed’ curve in Figure 2.5 is based on a cluster run
where assumed non-fault related samples which fell into the 3 smallest clusters were
removed.

Discussion

The previous section presented the clemental steps in the unsupervised machine
learning process. It can be seen that this process is independent of the
measurements and therefore is applicable to a wide range of HUMS data. A particular
advantage of unsupervised machine learning is that it can highlight abnormalities in
the data even when the underlying cause is unknown.

The start point in the process is to define what data will be analysed and how it will
be pre-processed. For the particular demonstration described in Section 2, raw SOAP
concentration levels were used. This data highlighted two ‘abnormal’ gearboxes, one
of which was found to have a mast bearing which had spalled. Nothing untoward
could be established for the second gearbox. This has to be expected since the pre-
processing will be far from optimised in the initial stages of development.

Once a fault has been isolated, the measurements can be repeatedly re-analysed as a
means to refine the data pre-processing. The objective is to drive the system such
that measurements from the fault related gearbox consistently fall into minority data
clusters. This process revealed two further gearboxes, namely M468 and M285 as
‘abnormal’. Nothing was reported on M468 which could be identified as a fault
although the SOAP sampling rate had been increased, possibly indicating
engineering staff concern. However it was found that M285 was suffering spalling of
an epicyclic bearing.

With two known faults in the measurement data, a quantifiable performance
indicator was introduced, called the quality curve. These curves quickly reveal
whether the measurements combined with the cluster analysis are diagnostically
meaningful. For the SOAP demonstration it was established that correlated noise
within a mecasurement sample could be mitigated by normalising (dividing)
concentration levels by one selected concentration level. For the demonstration Fe,
Ag and Al were normalised by Mg. The attenuation of uncorrelated noise between
measurement samples was achieved by implementing a moving average, where the
‘latest’” concentration is given by the average of the present plus the four previous
values. Further diagnostic performance was also realised by including corrected
wear rates.

Conclusions

There is much still to be gained from the patterns concealed in helicopter HUMS
measurements. It is important that measurement patterns which are abnormal are
reported cven when the cause of the abnormality is unknown. It has been
demonstrated that unsupervised machine learning is one mechanism by which this
need can be delivered.

11
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The essence of the machine learning technique proposed was that cach
measurement may be considered as one dimension (axis). Therefore n
measurements would be mapped into n-dimensional measurement space. By
‘plotting’” measurements in this space, data clusters may become discernible. The
machine learning process actively searches for such clusters. Further, it has been
demonstrated that clusters which have a small number of measurement samples are
diagnostically significant in that such measurements can be related to the
development of mechanical faults.

Directly associated with the success of detecting mechanical faults is the selection of
appropriate measurements and how they are conditioned. Initially, it is doubtful that
the optimum data pre-processing requirements will be known. The demonstration
presented in this section identified a process by which various pre-processing
options could be assessed. In particular, quantifiable checks are proposed in the
form of quality (of discrimination) curves. It has been demonstrated that these
curves allow rapid quantifiable assessments to be realised, and emphasises which
data sclection and pre-processing will deliver the best fault discrimination capability.

Whilst the demonstration of the machine learning process has used CAA supplied
Spectrometric Oil Analysis (SOAP) data, it has been demonstrated that a process may
be followed which is measurement independent. This generic process will be of
fundamental importance in the analysis and interpretation of HUMS data, which
contains many different types of measurements from a variety of sensors.




Table 2.1 CAA supplied SOAP data

AC_REG [SER TIME S_DATE [Fe |Cr (Al |Cu |Ag [Ni |Si (Mg |Zn
1 G_TIGE |[M285 |10852.25(27/02/89 |0.6 |0.0 (0.4 |0.1 |0.0 |0.0 |0.0 [0.1 |0.0
2 |G _TIGE |[M285 |10900.00|18/03/89 (0.8 |0.0 |0.6 |0.1 |0.0 |0.0 [0.0 [0.1 [0.0
3 |G TIGE [M285 [11003.05(17/04/89 (1.2 [0.1 [0.0 [0.1 [0.2 (0.1 |0.0 |0.1 |0.0
4 |G_TIGE [M285 [10947.00(04/04/89 (0.4 [0.0 (0.6 [0.1 [0.0 [0.1 [0.0 |0.1 |0.0
IS |G _TIGE [M285 [11049.20(26/04/89 |1.3 [0.0 1.0 [0.1 0.1 [0.0 |0.0 |0.2 (0.0
[6 |G _TIGE |[M285 [11103.30[08/05/89 [0.8 [0.1 [1.0 [0.2 [0.2 [0.1 [0.0 0.1 [0.3
7 G_TIGE [M285 |11019.00{14/05/89 |0.7 |0.0 [0.2 |0.1 [0.0 |0.1 [0.0 [0.1 |0.0
18 G_TIGE |[M285 |11152.19|23/05/89 |0.7 |0.0 [0.5 |0.1 |0.1 |0.2 |0.0 (0.1 |0.0
|9 |G _TIGE [M285 [11207.00[04/06/89 [0.5 [0.0 [0.0 [0.1 [0.0 [0.0 [0.0 0.2 [0.0
10 |[G_TIGE |M468 |[11250.00 0.6 (0.0 |0.8 [0.1 |0.1 (0.1 |0.0 |0.3 0.0
11 |G_TIGE |M468 |11295.00/26/06/89 (0.4 |0.0 (0.0 |0.1 [0.1 |0.1 (2.0 [0.1 |0.0
12 |G_TIGE |M468 |11362.00|06/07/89 |0.3 |0.0 |0.0 |0.1 0.1 |0.0 |2.0 [0.1 0.0
13 |G_TIGE |[M468 |11394.00(17/07/89 0.4 [0.0 |0.0 [0.1 [0.0 [0.0 [2.0 |0.2 [0.0
14 |G_TIGE |M468 |11468.00|13/08/89 |0.6 |0.0 |0.0 |0.1 |0.1 |0.0 |2.0 [0.3 0.0
15 |G_TIGE |[M468 |11495.00/22/08/89 0.8 |0.0 |0.0 |0.1 |0.1 0.0 |2.0 [0.4 [0.0
16 |G_TIGE |[M468 |11609.00/01/11/89 0.5 |0.0 |0.3 |0.1 |0.0 |0.0 [0.0 [0.2 [0.0
17 |G_TIGE |[M468 |11746.00/18/11/89 |0.9 |0.0 1.0 |0.1 |0.2 |0.0 |0.0 (0.5 [0.0
18 |G_TIGE |M468 (11798.00(27/11/89 (1.0 |0.0 |1.0 |0.1 [0.3 |0.0 [0.0 |0.6 (0.0
19 |G_TIGE |M468 [11946.00(22/12/89 (1.5 |0.0 |1.4 |0.1 [1.6 [0.0 [0.0 |0.6 [0.0
20 |G _TIGE |M468 [12014.88(12/01/90 (0.8 (0.0 (0.7 (0.1 |0.2 (0.0 (1.0 |0.3 |0.0
21 |G_TIGE [M468 [12034.56(18/01/90 (0.8 (0.0 (0.4 (0.1 |0.2 (0.0 [0.0 |0.3 |0.0
22 |G_TIGE |M468 [12047.68(22/01/90 (0.8 [0.0 [0.2 [0.1 |0.1 (0.0 [0.0 |0.3 |0.0
23 |G_TIGE [M468 [12051.00/23/01/90 (0.8 |0.0 |0.5 |0.1 [0.2 |0.0 (0.0 (0.3 [0.0
24 |G_TIGE |M468 [12054.20 [24/01/90 [0.9 [0.0 (0.5 (0.1 |0.2 [0.0 [0.0 |0.3 |0.0
25 |G _TIGE |M468 [12057.40(25/01/90 [0.9 [0.0 [0.5 |0.1 |0.2 [0.0 [0.0 |0.3 |0.0
26 |G_TIGE |M468 [12063.80(27/01/90 (1.0 |0.0 (0.6 |0.1 [0.2 |0.0 (0.0 |0.3 [0.0
27 |G_TIGE |M468 [12073.40(30/01/90 (1.0 |0.0 (0.3 |0.1 [0.1 |0.0 [0.0 |0.3 |0.0
28 |G _TIGE [M468 [12076.60(31/01/90 (1.1 [0.0 [0.2 (0.1 [0.1 (0.0 (0.0 |0.4 |0.0
29 |G_TIGE |M468 [12083.00|02/02/90 (1.0 |0.0 [0.0 |0.1 [0.1 |0.0 [0.0 [0.3 |0.0
30 |G_TIGE |M468 [12115.00{12/02/90 [0.4 |0.0 [0.0 |0.1 [0.0 |0.0 [0.0 [0.1 |0.0
31 |[G_TIGE |[M468 [12118.20(13/02/90 [0.5 (0.0 (0.0 [0.1 [0.0 (0.0 [0.0 |0.1 |0.0
32 |[G_TIGE |M468 [12121.40|14/02/90 |0.5 |0.0 |0.0 |0.1 0.0 |0.0 |0.0 [0.1 |0.0
33 |G_TIGE [M468 |12124.60|15/02/90 |0.5 |0.0 (0.4 |0.1 |0.0 |0.0 [0.0 (0.2 |0.0
34 |G_TIGE [M468 |12137.40|19/02/90 |0.7 |0.0 |0.4 (0.1 |0.1 |0.0 |[1.0 [0.3 |0.0
35 |G_TIGE |M468 [12137.40(19/02/90 |0.6 |0.0 [0.4 |0.1 |0.1 [0.0 [1.0 |0.2 |0.0
36 |G_TIGE |M468 [12124.60(15/02/90 [0.5 (0.0 (0.0 [0.1 [0.0 (0.0 (0.0 |0.2 0.0
37 |G _TIGE |M468 [12143.60(21/02/90 [0.4 (0.0 (0.0 [0.1 [0.0 (0.0 [0.0 |0.2 |0.0
38 |G_TIGE |M468 [12192.00(08/03/90 (0.3 [0.0 (0.2 (0.1 |0.0 (0.0 (1.0 |0.1 |0.0
39 |G _TIGE |M468 [12248.00(21/03/90 |0.5 (0.0 [0.0 [0.1 |0.1 (0.0 [0.0 |0.2 |0.0
40 |G_TIGE |M468 ([12347.16(17/04/90 |0.7 |0.0 |0.0 |0.1 |0.0 |0.0 |0.0 [0.1 |0.0
41 |G_TIGH |M306 |7895.30 |30/01/89 |0.8 [0.0 [0.4 [0.1 |0.4 [0.1 [0.0 |0.2 |0.0
42 |G_TIGH [M306 |7968.05 |14/02/89 |1.2 |0.0 (0.8 |0.1 |0.5 |0.1 |0.0 (0.4 |0.0
43 |[G_TIGH |M306 [8013.35 [28/02/89 (1.5 (0.0 [0.9 (0.1 [0.5 [0.0 [0.0 [0.5 [0.0
44 |G _TIGH |M306 [8049.20 |06/03/89 [2.0 (0.0 (1.2 [0.1 |0.7 (0.0 [0.0 |0.7 [0.3
45 |G_TIGH |M306 [8119.55 [22/03/89 [0.6 (0.0 (0.5 [0.1 |0.0 (0.1 [0.0 (0.2 [0.0
46 |G_TIGH |M180 [8246.45 [04/05/89 (1.1 |0.0 |0.6 |0.1 |0.0 |0.0 |0.0 [0.2 |0.0
47 |G_TIGH |M180 |8300.00 |18/05/89 |1.0 |0.0 |0.6 |0.1 |0.0 |0.1 |2.0 |0.2 |0.0
48 |G_TIGH |M180 [8348.00 (01/06/89 0.4 |0.0 |0.0 |0.1 |0.0 |0.0 |0.0 [0.1 [0.0
49 |G_TIGH [M180 |8397.00 |16/06/89 |0.5 |0.0 |0.2 (0.1 |0.0 |0.1 |0.0 [0.1 |0.0
{50 |G_TIGH |M180 |8453.00 |29/06/89 |0.8 |0.0 |0.6 [0.1 |0.1 |0.1 |0.0 |0.2 |0.0
(51 |G _TIGH [M180 [8505.58 [09/07/89 [0.9 0.1 [1.6 [0.1 [0.0 [0.0 [0.0 0.3 [0.0
[52 [G_TIGH [M180 [8543.00 [17/07/89 [1.1 0.0 [0.0 [0.1 [0.0 [0.0 [0.0 0.4 [0.2
53 [G_TIGH |M180 [8690.00 |[14/08/89 |1.4 |0.0 |1.5 |0.1 0.2 |0.0 |1.0 |0.5 |0.0
54 |G_TIGH |M180 [8749.00 [25/08/89 |1.4 |0.0 |2.0 |0.1 |0.3 |0.0 |0.0 [0.5 |0.0
55 |G_TIGH |M180 |[8809.23 [15/09/89 |1.1 0.0 |1.3 |0.1 |0.2 |0.2 |0.0 [0.4 [0.0
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||D AC_REG |SER TIME S_DATE |[Fe |Cr |Al [Cu |Ag |Ni [Si |Mg [Zn
56 |G _TIGH [M180 [8985.90 [24/10/89 [0.5 [0.0 0.4 [0.1 |0.0 |0.0 [0.0 |0.1 |0.0
57 [G_TIGH [M180 [9051.36 [22/11/89 [0.9 [0.0 [1.0 |0.1 |0.0 |0.0 |0.0 |0.2 |0.0
[58 [G_TIGH [M180 [9107.39 [05/12/89 [1.0 [0.0 [1.3 [0.2 [0.3 [0.1 |0.0 [0.3 |0.0
[59 |G _TIGK [M246 [6620.00 [26/06/89 [0.4 [0.0 |0.5 [0.2 [0.2 |0.1 [2.0 |0.1 |0.0
[60 [G_TIGU [M186 |6505.35 [24/05/89 [2.1 [0.0 0.5 |0.1 |0.9 |0.0 |1.0 [0.5 |0.2
[61 [G_TIGU [M186 [6549.00 [08/06/89 [3.0 [0.0 1.5 [0.2 [1.0 |0.0 |0.0 [1.0 |0.2
[62 [G_TIGU [M186 |6555.00 [09/06/89 [2.3 [0.1 |1.8 |0.2 |0.8 0.1 |0.0 |0.8 |0.2
[63 |G TIGU [M186 [6624.00 [22/06/89 [1.6 [0.1 |1.0 |0.1 |0.3 |0.1 |0.0 |0.4 |0.0
[64 [G_TIGU [M186 |6640.00 [26/06/89 [1.7 [0.1 |0.4 |0.2 |0.6 |0.2 |2.0 [0.4 |0.2
[65 |G _TIGU [M186 [6743.00 [17/07/89 [2.6 [0.0 |2.9 |0.1 |0.7 |0.0 |1.0 |0.6 |0.0
[66 |G_TIGU [M186 |6758.00 [22/07/89 [0.9 [0.0 1.0 |0.1 |0.2 |0.1 |0.0 [0.2 |0.0
[67 |G_TIGU [M186 |6786.00 [27/07/89 [0.9 [0.0 0.5 |0.1 |0.0 |0.1 |0.0 [0.2 |0.0
[68 |G _TIGU [M186 [6799.00 [01/08/89 [1.2 [0.0 [0.0 |0.1 |0.0 |0.0 |0.0 0.3 |0.0
[69 |G _TIGU [M186 |6872.00 [14/08/89 [0.7 [0.0 0.0 |0.1 |0.0 |0.0 |0.0 [0.2 |0.0
70 |G _TIGU |M186 |6892.00 [25/08/89 (0.8 [0.0 [0.5 |0.1 [0.1 [0.0 [0.0 [0.2 [0.0
71 |G _TIGU |M186 |6943.20 [22/09/89 (0.3 (0.0 (0.0 |0.1 [0.0 [0.0 [0.0 [0.1 [0.0
72 |G _TIGU |M186 |6984.55 |03/10/89 (0.5 [0.0 [0.3 0.1 [0.0 [0.1 [0.0 [0.1 [0.0
73 |G_TIGU |M186 [7002.00 |06/10/89 |0.4 [0.0 0.2 |0.1 [0.0 [0.0 [0.0 [0.1 [0.0
74 |G_TIGU [M186 |7035.10 [25/10/89 |0.4 0.0 0.2 [0.1 [0.0 [0.0 |0.0 [0.1 |0.0
75 |G _TIGU |M186 [7145.35 |09/11/89 [0.5 [0.0 [0.0 |0.1 [0.0 [0.1 [0.0 [0.1 [0.0
76 |G_TIGU [M186 |7299.30 [11/12/89 [1.2 0.0 |0.4 [0.1 |0.0 [0.0 |0.0 [0.3 [0.0
77 |G_TIGV  [M306 0.4 (0.0 |0.2 |0.1 |0.1 |0.0 |0.0 |0.1 [0.0
78 |G _TIGV |M306 |6226.25 |16/08/88 (0.7 [0.0 [0.3 [0.1 [0.0 [0.0 [2.0 [0.1 [0.0
79 |G_TIGV |M306 |6294.55 |13/09/88 (1.0 [0.0 (0.4 0.1 [0.0 [0.0 [0.0 [0.2 0.0
|80 |G _TIGV_|M306 |6397.00 [25/10/88 [0.7 |0.0 [0.4 [0.1 |0.1 [0.0 [3.0 [0.2 [0.0
81 _[G_TIGV [M127 01/11/89 [0.5 [0.0 (0.2 |0.1 [0.0 (0.0 [0.0 0.1 |0.0
[82 [G_TIGW [M132 [4810.00 [14/09/88 |0.6 [0.0 [0.4 |0.1 /0.0 [0.0 |2.0 |0.1 |0.0
[83 |G _TIGW [M132 [4892.60 [11/10/88 0.6 0.0 [0.5 [0.1 |0.0 |0.0 |2.0 [0.1 0.0
[84 |G _TIGW [M132 [4957.30 [01/11/88 [1.0 [0.0 [0.8 [0.1 [0.0 [0.0 [2.0 [0.3 0.0
[85 [G_TIGW [M132 [4998.55 [15/11/88 0.6 |0.0 |0.4 |0.1 0.0 |0.0 |2.0 |0.2 0.0
[86 [G_TIGW [M132 [5057.00 [02/12/88 0.5 [0.0 [0.0 [0.2 |0.2 [0.0 |2.0 |0.1 0.0
|87 |G_TIGW [M132 [5057.00 [02/12/88 [0.4 [0.0 /0.0 /0.2 |0.2 |0.0 |2.0 |0.1 |0.0
[88 |G _TIGW [M132 [5149.25 [24/01/89 [0.4 0.0 |0.6 |0.2 |0.1 |0.0 |2.0 |0.1 |0.0
[89 [G_TIGW [M132 [5216.25 [18/02/89 [0.5 [0.0 [0.5 0.1 /0.0 |0.0 |0.0 |0.1 |0.0
90 |G_TIGW |M132 |5250.45 [01/03/89 [0.6 [0.0 [0.7 [0.1 [0.0 [0.0 [0.0 0.1 [0.0
191 |G _TIGW |M132 |5396.05 [20/04/89 [0.6 |0.0 (0.0 [0.1 0.1 |0.1 |0.0 [0.2 [0.0
92 |G_TIGW [M132 |5486.10 [09/05/89 (1.0 |0.0 [1.5 [0.2 |0.2 |0.2 [0.0 [0.2 |0.2
198 |G_TIGW |M132 |5500.00 [14/05/89 |0.4 0.0 |0.0 [0.1 [0.0 |0.1 |0.0 |0.1 [0.0
[94 |G_TIGW [M132 [5602.00 [21/06/89 [0.4 [0.0 [0.0 0.1 |0.0 |0.1 [0.0 0.1 |0.0
[95 |G _TIGW [M132 [5764.00 [27/07/89 |0.3 [0.0 |0.0 0.1 |0.0 |0.0 |0.0 |0.1 |0.0
[96 [G_TIGW [M132 [5802.00 [02/08/89 [0.3 [0.0 [0.0 0.1 |0.0 0.0 |0.0 0.1 |0.0
[97 |G _TIGW [M132 [5841.00 [14/08/89 0.3 [0.0 [0.0 0.1 [0.0 /0.0 [1.0 |0.1 |0.0
[98 |G_TIGW [M132 [5900.00 [30/08/89 [0.6 [0.0 [0.2 [0.1 |0.1 |0.0 |0.0 |0.2 0.0
[99 [G_TIGW [M132 [5985.00 [18/09/89 [0.7 [0.0 [0.6 0.1 [0.0 0.0 |0.0 |0.2 |0.2
100 |G_TIGW |M132 |6016.31 |28/09/89 |0.4 |0.0 /0.0 [0.1 [0.0 |0.0 |0.0 [0.2 ]0.0
101 |[G_TIGW |[M132 |6048.20 |03/10/89 [0.4 [0.0 [0.0 |0.1 [0.0 [0.1 [0.0 [0.2 0.0
102 |G_TIGW [M132 [6101.35 |25/10/89 [0.4 [0.0 (0.3 0.1 [0.0 [0.0 [0.0 |0.1 [0.0
103 |G_TIGW |M453 |6345.00 |09/02/90 (0.6 [0.0 [0.3 0.1 [0.0 [0.0 [1.0 [0.1 ]0.0
104 |G_TIGW |M453 |6447.00 |03/03/90 (0.8 [0.0 (0.2 [0.1 |0.0 |0.0 0.0 |0.2 0.0
105 |G_TIGW [M453 |6521.00 [19/03/90 [0.5 [0.0 [0.0 |0.1 [0.0 [0.0 [1.0 [0.1 [0.0
106 |G_TIGW |M453 [6557.00 |26/03/90 (0.6 [0.0 [0.2 |0.1 0.0 [0.0 0.0 [0.1 0.0
107 |G_TIGW [M453 |6592.00 [09/04/90 |0.9 [0.0 0.2 [0.1 [0.0 |0.0 [0.0 [0.2 0.0
108 |G_TIGW |[M453 |6676.00 |11/05/90 (1.0 [0.0 [0.0 [0.1 J0.0 [0.0 0.0 [0.3 [0.3
109 |G_TIGW [M453 [6747.00 |07/06/90 [0.5 [0.0 [0.0 [0.1 0.0 [0.0 0.0 [0.1 0.0
110 |G_TIGW_|[M453 |6928.00 |15/08/90 (2.0 [0.0 [0.0 [0.1 0.8 [0.0 [0.0 [0.3 [0.2
111 |G_BMCX [M149 |2405.15 |01/09/88 [0.5 [0.0 [0.7 [0.1 ]0.0 [0.0 [0.0 [0.1 0.0
112 |G_BMCX [M149 [2497.00 |27/09/88 (0.7 [0.0 [0.5 [0.1 0.0 [0.0 [0.0 [0.2 [0.0
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ID |AC_REG |SER TIME S_DATE [Fe [Cr |Al |[Cu |Ag [Ni [Si |Mg [Zn
113 |G_BMCX [M149 |2557.50 [19/10/88 |0.4 |0.0 (0.4 (0.1 [0.0 |0.0 {3.0 [0.1 0.0
114 |G_BMCX [M149 |[2613.00 |07/11/88 [0.7 |0.0 |0.5 (0.1 |0.0 |0.0 (2.0 |0.2 |0.0
115 |G_BMCX [M149 |2701.00 |09/12/88 |1.0 |0.0 (0.5 [0.2 (0.3 |0.1 (2.0 [0.2 |0.0
116 |G_BMCX [M149 |2746.00 |21/12/88 |1.2 0.0 [0.5 [0.2 [0.3 |0.1 [2.0 [0.3 [0.0
117 |G_BMCX [M149 |2801.30 |06/01/89 |1.3 [0.0 (1.0 |0.1 [0.1 |0.1 |2.0 |0.5 0.0
118 |G_BMCX [M149 |2853.25 [24/01/89 |0.6 (0.0 (0.6 |0.1 [0.0 [0.1 [2.0 |0.2 0.0
119 |G_BMCX |[M149 [2902.05 (08/02/89 |0.9 |0.0 (0.4 (0.1 [0.0 [0.0 [0.0 [0.2 0.0
120 |G_BMCX |[M149 |2957.10 |23/02/89 |1.0 |0.0 (0.5 (0.1 (0.1 |0.0 [0.0 [0.2 |0.0
121 |G_BMCX [M149 [2987.00 1.1 |10.0 |0.4 |0.1 |0.1 [0.0 |0.0 |0.3 |0.0
122 |G_BMCX |M361 |3146.27 |16/04/89 |1.8 |0.1 [0.4 [0.2 (0.2 |0.1 [0.0 [0.3 0.3
123 |G_BMCX [M361 |[3041.50 [28/03/89 [0.9 |0.0 |0.5 [0.1 |0.0 |0.1 [0.0 |0.1 |0.0
124 |G_BMCX |M361 |3195.58 |26/04/89 |2.4 |0.0 {1.2 [0.1 [0.4 |0.1 |0.0 [0.4 |0.2
125 |G_BMCX |M361 |3247.40 |10/05/89 (1.9 |0.0 |1.6 [0.1 [0.5 |0.1 |0.0 [0.5 |0.2
126 |G_BMCX |M361 |3274.05 |23/05/89 2.2 |0.0 |{1.0 [0.1 [0.5 |0.1 |0.0 [0.7 |0.3
127 |G_BMCX |M361 |3333.00 |01/06/89 |2.2 0.0 |0.5 [0.1 [0.2 |0.1 |0.0 [0.7 [0.2
128 |G_BMCX [M361 [3353.34 |09/06/89 (1.8 |0.0 |1.4 [0.1 |0.5 |0.1 [0.0 |0.6 |0.2
129 |G_BMCX [M361 [3420.00 [22/06/89 (1.6 |0.0 |0.8 [0.1 0.5 |0.1 [0.0 |0.6 |0.0
130 |G_BMCX |M361 |3449.00 |29/06/89 |1.6 |0.0 |0.8 [0.1 [0.4 |0.1 |0.0 |0.6 [0.2
131 |G_BMCX [M361 3475.00 |06/07/89 (1.4 |0.1 |1.0 |0.2 [0.4 (0.1 |0.0 [0.5 |0.0
132 |G_BMCX [M361 |[3554.00 (27/07/89 [0.9 |0.0 |0.0 |0.1 |0.0 |0.0 (0.0 |0.2 |0.0
133 |G_BMCX [M361 |3595.00 (12/08/89 {1.4 |0.0 |0.0 [0.1 |0.0 |0.0 [0.0 |0.2 |0.0
134 |G_BMCX [M361 [3648.00 (20/08/89 (1.0 |0.0 |0.0 [0.1 |0.0 |0.0 |0.0 |0.3 |0.0
135 |G_BMCX [M361 |[3745.22 (14/09/89 (0.8 |0.0 |0.0 (0.1 |0.1 |0.1 |0.0 [0.3 |0.0
136 |G_BMCX |[M361 3793.00 |18/09/89 (1.0 (0.0 |0.0 |0.1 |0.1 [0.0 (0.0 [0.5 0.0
137 |G_BMCX [M361 [3849.00 |02/10/89 (1.1 |0.0 |0.2 [0.1 |0.1 |0.2 |0.0 |0.5 |0.0
138 |G_BMCX |[M361 4046.21 |13/12/89 (0.7 (0.0 |0.4 |0.1 |0.0 [0.0 (0.0 [0.1 0.0
Table 2.2 CAA supplied SOAP data
ID [TIME T_DATE |L_REF |REMOVAL [REASON OIL_CH (PQ
1 10852.25 |31/03/89 |C1990 10
2 10900.00 |31/03/89 |C1991 10
3 11003.05 [20/04/89 |D1391 e
4 10947.00 |21/04/89 |D1401 8
|15 11049.20 |03/05/89 |E224 13
|6 11103.30 [12/05/89 |E864 11
7 11019.00 |20/05/89 |E1373 12
|18 11152.19 |26/05/89 |E1667 10
|19 11207.00 [10/06/89 |F674 REMOVED |OVERHAUL 11
10 [{11250.00 [17/06/89 |F1099 10
11 [11295.00 [28/06/89 |[F1834 9
12 [11362.00 [10/07/89 |G559 9
13 [11394.00 (20/07/89 [G1249 9
14 |11468.00 [16/08/89 [H1132 7
15 [11495.00 [24/08/89 |[H1675 8
16 [11609.00 (02/11/89 |[L114 9
17 [11746.00 |05/12/89 |[M204 8
18 [11798.00 |05/12/89 [M205 8
19 [11946.00 [11/01/90 |[A638 8
20 [12021.60 [17/01/90 |A1088

21 |12043.20 |26/01/90 |A1657

22 [12050.60 [26/01/90 |A1658

23 |12051.00 |01/02/90 |B004 9
24 [12054.60 [01/02/90 |B005

25 |12058.20 |01/02/90 |B0O06
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ID [TIME T_DATE |[L_REF |[REMOVAL |REASON OIL_CH [PQ
26 [12065.40 [01/02/90 |B0O0O7

27 [12076.20 |03/02/90 |B126

28 [12079.80 [03/02/90 |B127

29 (12087.00 [16/02/90 |B920

30 [12123.00 [16/02/90 [B921

31 [12126.60 [16/02/90 [B922

32 [12130.20 [16/02/90 [B923

33 [12133.80 [17/02/90 |B1063

34 [12148.20 [22/02/90 [B1312

35 [12148.20 [22/02/90 [B1313

36 [12133.80 [23/02/90 |B1398

37 [12155.40 [23/02/90 |B1399

38 [12192.00 [14/03/90 [C814 OIL 10
39 [12248.00 [23/03/90 |[C1432 7
40 [12347.16 [20/04/90 |D1164 8
41 [7895.30 |08/03/89 |C488 8
42 [7968.05 |08/03/89 [C489 10
43 [8013.35 [31/03/89 [C1992 11
44 [8049.20 [31/03/89 |C1993 10
45 [8119.55 [21/04/89 [D1402 |[REMOVED |METAL CONTAMINATION

46 [8246.45 |09/05/89 |E504 14
47 [8300.00 [20/05/89 |[E1375 14
48 [8348.00 |05/06/89 [F223 15
49 [8397.00 [22/06/89 |F1455 8
|50 [8453.00 [30/06/89 [F2100 9
151 [8505.58 [12/07/89 |G713 9
52 [8543.00 [20/07/89 |G1250 8
I53 [8690.00 [16/08/89 |H1133 7
154 [8749.00 [29/08/89 |H1935 9
|55 [8809.23 [16/09/89 [J1070 |REMOVED |EPICYCLIC CHANGE OIL 9
|56 [8985.90 [02/11/89 |L112

|57 [9051.36 |05/12/89 |M206 9
|58 [9107.39 [06/12/89 |M292 8
|59 |6620.00 [28/06/89 |F1835 10
|60 [6505.35 [30/05/89 |E1922 13
|61 [6549.00 [10/06/89 |F673 11
|62 |6555.00 [16/06/89 |F1060

163 [6624.00 [23/06/89 [F1497 13
|64 16640.00 [28/06/89 |[F1836 10
|65 [6743.00 [20/07/89 |G1251 10
|66 [6758.00 [27/07/89 |G1761 9
|67 [6786.00 [31/07/89 |G1964 9
|68 [6799.00 [03/08/89 |H238 |REMOVED |SEAL CHANGE OIL 11
|69 [6872.00 [16/08/89 |H1134 6
70 [6892.00 [29/08/89 [H1936 10
71 [6943.20 [07/10/89 |K427 8
72 |6984.55 [30/10/89 |K1871 9
73 |7002.00 [30/10/89 |K1872 8
74 [7035.10 [30/10/89 |[K1873 |REMOVED |SEAL CHANGE OIL 9
75 [7145.35 [16/11/89 [L940 11
76 [7299.30 [11/01/90 |A639 |REMOVED |EPICYCLIC CHANGE OIL 9
77 06/08/88 |H289

78 [6226.25 [19/10/88 |K1157 6
79 [6294.55 [19/10/88 |K1158 4
|80 |6397.00 [22/11/88 |L1296 |REMOVED |[OPERATION REQUIREMEN 4
81 02/11/89 [L113

82 [4810.00 [19/10/88 |[K1159 4
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iD [TIME T _DATE |L_REF |REMOVAL |REASON OIL_CH |PQ
83 [4889.50 [19/10/88 |K1160

184 [4957.30 [22/11/88 [L1297 -
85 [(4998.55 [22/11/88 [L1298 -
86 [5057.00 [12/01/89 |A757 8
187 [5057.00 [12/01/89 |A758 8
|88 |5149.25 [10/02/89 |B663 9
189 [5216.25 [31/03/89 |C1994 14
90 |5250.45 [31/03/89 |C1995 14
91 [5396.05 [24/04/89 |D1579 11
192 [5486.10 [12/05/89 |E865 10
193 [5500.00 [20/05/89 |E1374 10
194 |5602.00 [22/06/89 |[F1456 8
195 |5764.00 [31/07/89 [G1968 8
196 |5802.00 [03/08/89 [H239 8
197 |5841.00 [16/08/89 |[H1135 8
|98 [5900.00 [07/09/89 [J422 7
|99 |5985.00 [23/09/89 [J1544 8
100 |6016.31 [30/09/89 |J2108 9
101 |6048.20 [07/10/89 |K429 9
102 [6101.35 [30/10/89 |K1874 |REMOVED |[METAL CONTAMINATION 10
103 |6364.70 [14/02/90 |B804 9
104 |6447.00 [06/03/90 |C259 8
105 [6521.00 [21/03/90 |C1302 7
106 [6557.00 [29/03/90 [C1838 6
107 |6592.00 [12/04/90 |D756 8
108 |6717.40 [12/05/90 |E702

109 |6747.00 [08/06/90 |[F495 8
110 [7017.40 [17/08/90 |H1044

111 [2405.15 [19/10/88 |K1161 5
112 [2497.00 [19/10/88 |K1162 4
113 [2557.50 [22/11/88 [L1294

114 [2613.00 [22/11/88 |L1293 4
115 [2701.00 [12/01/89 |A762 8
116 |2746.00 [12/01/89 |A763 T
117 |2801.30 [08/03/89 [C486 7
118 [2853.25 |08/03/89 |C487 9
119 [2902.05 [31/03/89 |C1986 12
120 [2957.10 [31/03/89 [C1987 11
121 [2987.00 [31/05/89 |[C1988 |REMOVED |OVERHAUL 10
122 [3146.27 [20/04/89 |D1390 10
123 |3041.50 [21/04/89 |D1403 10
124 [3195.58 [03/05/89 |E223 14
125 |3247.40 [18/05/89 |E934 16
126 [3274.05 |25/05/89 |[E1666 14
127 [3333.00 [05/06/89 |F222 OIL 14
128 |3353.34 [16/06/89 |F1059 11
129 [3420.00 [23/06/89 |F1496 8
130 [3449.00 [30/06/89 |F2099 8
131 [3475.00 [10/07/89 |G558 10
132 [3554.00 [31/07/89 |G1965 7
133 |3595.00 [16/08/89 |H1136 7
134 [3648.00 [24/08/89 |H1674 9
135 [3745.22 [16/09/89 |J1071 11
136 [3793.00 [19/09/89 |J1214 13
137 [3849.00 [07/10/89 |K428 OIL 9
138 [4046.21 [11/01/90 |A637 8
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Table 2.3 Cluster analysis based on Fe, Mg, Al and Ag

iD Cluster [|SER_NO [ID Cluster [SER_NO |ID Cluster |SER_NO
65 1 M186 3 10 M285 46 10 M180
61 2 M186 21 10 M468 104 10 M453
62 3 M186 23 10 M468 106 10 M453
124 4 M361 25 10 M468 108 10 M453
126 4 M361 27 10 M468 107 10 M453
44 4 M306 118 10 M149 103 10 M453
19 5 M468 116 10 M149 45 10 M306
125 6 M361 114 10 M149 59 10 M246
128 6 M361 113 11 M149 56 10 M180
54 6 M180 73 11 M186 41 10 M306
53 6 M180 74 11 M186 47 10 M180
129 7 M361 93 11 M132 52 10 M180
43 7 M306 94 11 M132 50 10 M180
63 7 é M186 96 11 M132 24 10 M468
130 7 M361 100 11 M132 22 10 M468
122 8 M361 101 11 M132 20 10 M468
|60 8 M186 102 11 M132 15 10 M468
l64 8 M186 109 11 M453 16 10 M468
127 8 M361 105 11 M453 2 10 M285
110 8 M453 97 11 M132 136 10 M361
117 9 M149 95 11 M132 134 10 M361
51 9 M180 91 11 M132 132 10 M361
6 9 M285 29 10 M468 115 10 M149
5 9 M285 28 10 M468 119 10 M149
58 9 M180 33 10 M468 121 10 M149
92 9 M132 34 10 M468 120 10 M149
42 9 M306 26 10 M468 123 10 M361
57 9 M180 40 10 M468 75 11 M186
66 9 M186 67 10 M186 Fé 11 M186
55 9 M180 69 10 M186 48 11 M180
131 9 M361 70 10 M186 49 " g M180
17 9 M468 72 10 M186 11 11 M468
18 9 M468 68 10 M186 12 11 M468
84 9 M132 76 10 M186 31 11 M468
111 10 M149 78 10 M306 32 18 M468
112 10 M149 80 10 M306 37 i M468
133 10 M361 79 10 M306 38 11 M468
135 10 M361 85 10 M132 39 1 M468
137 10 M361 88 10 M132 30 11 M468
138 10 M361 90 10 M132 13 11 M468
1 10 M285 89 10 M132 14 11 M468
4 10 M285 83 10 M132 9 11 M285
8 10 M285 98 10 M132 86 11 M132
7 10 M285 99 10 M132

10 10 M468 82 10 M132
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Table 2.4 Cluster analysis based on Fe, Al and Ag normalised by Mg

iD Cluster |SER_NO |ID Cluster [SER_NO |ID |Cluster [SER_NO
138 1 M361 51 7 M180 46 7 M180
1 1 M285 49 ir M180 47 7. M180
4 1 M285 123 7 M361 50 T M180
2 1 M285 116 7 M149 52 7 M180

|16 1 M285 114 7 M149 65 7 M186
5 1 M285 112 7 M149 66 74 M186
v 1 M285 121 8 M149 54 74 M180
3 1 M285 134 8 M361 45 7 M306
88 1 M132 9 8 M285 56 7 M180
59 2 M246 135 8 M361 57 o M180
110 3 M453 27 8 M468 71 8 M186
58 4 M180 28 8 M468 s 8 M186

|61 4 M186 29 8 M468 74 8 M186
41 4 M306 31 8 M468 75 8 M186
|63 4 M186 32 8 M468 76 8 M186
|64 4 M186 33 8 M468 92 8 M132
|62 4 M186 37 8 M468 93 8 M132
|60 5 M186 38 8 M468 94 8 M132
107 5 M453 39 8 M468 96 8 M132
108 5 M453 40 8 M468 97 8 M132
109 5 M453 67 8 M186 98 8 M132
122 6 M361 69 8 M186 100 8 M132
124 6 M361 70 8 M186 101 8 M132
126 6 M361 19 6 M468 99 8 M132
11 6 M468 42 6 M306 103 8 M453
17 6 M468 44 6 M306 104 8 M453
21 6 M468 80 6 M306 106 8 M453
25 6 M468 43 6 M306 105 8 M453
24 6 M468 18 6 M468 95 8 M132
23 6 M468 16 6 M468 91 8 M132
22 6 M468 15 6 M468 72 8 M186
20 6 M468 10 6 M468 68 8 M186
55 7 M180 125 6 M361 48 8 M180
78 74 M306 127 6 M361 34 8 M468
79 T M306 129 6 M361 30 8 M468
83 7 M132 128 6 M361 26 8 M468
85 7 M132 111 7 M149 12 8 M468
90 74 M132 133 74 M149 13 8 M468
89 Vi M132 115 7 M149 14 8 M468
86 7 M132 7 7 M149 136 8 M361
84 7 M132 119 7 M149 130 8 M361
82 T M132 8 7 M285 131 8 M361
53 7 M180 120 74 M149 133 8 M361
102 7 M132 118 7 M149 132 8 M361
Bl Vi M180 137 7 M361
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DATA PRE-PROCESSING
General

This section concentrates on the 2nd objective of the CAA contract 7D/S/1128,
namely demonstrating the diagnostic importance of data pre-processing by utilising
Flight Data Recorder (FDR) data combined with HUMS vibration data.

The FDR and HUMS Vibration Data

Vibration and FDR data from 23 Super Puma MK I helicopters were used for the
purpose of this demonstration. The data was acquired in 1993 during more than 1645
revenue earning flights and was stored in a database comprising 3137 records. The
FDR parameters include pressure -altitude, indicated airspeed, magnetic heading,
pitch attitude, roll attitude, engine 1 torque, engine 2 torque, main rotor RPM, tail
rotor RPM, collective pitch angle, longitudinal cyclic control, lateral cyclic control,
tail rotor position, outside air temperature, yaw rate, altitude rate, normal
acceleration. The HUMS data comprises a signal divided into a number of cycles
having the same period (frequency) of the main rotor. About 100 cycles (22.6
seconds worth of data) are averaged. The vibration harmonics are calculated from
the average cycle. The FDR parameters are captured at the beginning of the
acquisition frame. The fourth harmonics (4R) of the vertical and lateral vibration
(from the RTB sensors) were considered in this investigation.

Vibration Data Pre-processing

The first function of pre-processing is to convert the analogue signals to digital
signals which are suitable for computer analysis. HUMS performs this function along
with two other pre-processing functions, namely, the signal averaging and the
Fourier analysis required to extract the vibration harmonics.

Further pre-processing is targeted at extracting a set of features from HUMS data that
vield an optimum identification of fault patterns. Here, normalised vibration is
derived from the measured vibration. The measured vibration V,, can be considered
to consist of three components:

=V Ve ¥, 3:1)

V,, is the vibration induced by operational conditions such as speed and weather.

V, is the vibration induced by factors such as equipment noise or different pilots
operating the same vehicle.

V,, is the vibration induced by mechanical faults.

It is clear that diagnosis based on V,, can trigger false alarms; a car moving on a
rough road experiences high vibration which may be confused with fault induced
vibration. Normalisation of helicopter vibration is required to remove V,,, and filter
V, from the measured vibration. The normalised vibration V., can be expressed as
the sum of V, and a constant value V_:

Vnom\ o Vh 15 V<: (32)

V. can be chosen to be the average value of the fleet vibration at standard
operational conditions. The pre-processed vibration V., ensures robust diagnostics.
The probability distribution of V, ., for healthy helicopters is expected to be a peaky
distribution with a distinct central value at V. .
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V,, can be estimated by subtracting V,,, from V,, and filtering out V,. A suitec of FDR
parameters and associated V,, measurements of healthy helicopters can be used to train
a system so that the system can predict V,, given the FDR parameters. The system
prediction (generalisation) capability can be tested by another set of FDR parameters
and associated V,, measurements. If the system predicts V,,, for the test data with the
same accuracy as obtained during training, the system will be adequately trained. The
system performance can be enhanced by pre-processing the FDR parameters using
model-based reasoning. If the test data and the training data do not cover the required
operational range, the outputs of the system will be questionable.

The Normalisation Process

DEFINE A METHOD TO FILTER
OUT THE CORRELATED NOISE
Figure 3.1 describes the I
n(TrmaI' jation process and | Cor0 RERINE T i
RSy PR ) ot i MODEL TO PRE-PROCESS
closely reflects what would THE MATH- THE FDR PARAMETERS
happen in-service. MODEL AND/OR I
THE PREDICTION CHOOSE A SIMULATION METHOD TO
. METHOD ESTIMATE V,, FROM THE PROCESSED
Section 3.2 expands on each FDR PARAMETERS. EVALUATE V,, AND
normalisation step. Vporm FOR BOTH A TRAINING DATA SET
AND A TEST DATA SET

|
TEST THE SYSTEM FOR: HIGH
CORRELATION AND ACCEPTABLE

PROBABILITY DISTRIBUTION
AND GENERALISATION ABILITY
1 ( .............. YES
FILTER THE
UNCORRELATED NOISE
Figure 3.1 The normalisation process
Demonstration of Data Pre-processing DEFINE A METHOD TO FILTER OUT
THE CORRELATED NOISE

The Correlated Noise

Whilst the noise in general can not be definitely predicted by a system or a math
model, its statistics can be adequately estimated. The correlated noise is induced by
factors that may influence the vibration in a consistent manner. For example, the
vibration levels of a helicopter may change with age. It is also possible that for a
fleet, the average vibration levels of individual helicopters may not be identical. For
these two particular cases, the correlated noise can be filtered out as follows:

vl)ﬁllcrrn,f ot Vx 7 Vl)u\rrugr + Vr’ (33)

V, indicates the vibration of the i'" helicopter and Vijaversge 18 the average value of V,
during specified time period. V,, is a constant value which can be chosen as the
average value of the fleet vibration. Variations in the value of V... between
specified time periods will trigger diagnostic alarms, if there is no noted mechanical
modification or observed age cffects that can explain these variations.

In practice, it will not be known in advance whether the individual helicopter ceffects
arc present. Therefore, this step may not be initially implemented.
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The Preliminary Math-Model

ESTABLISH A MATH MODEL
TO PRE-PROCESS
THE FDR PARAMETERS

The preliminary math model assumes that the vibration
is proportional to two derived parameters, namely the
Mach number at the tip of the advancing blade and the
air density.

Tbe Simulation Metbod CHOOSE A SIMULATION METHOD TO

ESTIMATE V,, FROM THE PROCESSED FDR
Neural network  technology  offers | PARAMETERS. EVALUATE Voo AND Vo, FOR
computational tools which can perform | BOTH A TRAINING DATA SET AND A TEST
non-linear  simulations. An  Artificial DATA SET
Neural Network (ANN) is applied to a
specific problem by allowing the network
to learn from a set of data how to solve the problem; this process is termed ‘training’.
The performance of the trained network is tested by using a set of test data which
has not been used during training. The potential of the neural network technology is
demonstrated in Section 4.

Unlike ANNs, Multi-Variate Regression analysis (MVR) relies on a math model to
simulate non-linear effects. During a training session, the MVR evaluates a weight
(cocefficient) for each non-linear function obtained from the math model. Thereafter,
weighted non-linear functions are evaluated and combined in a linear manner to
estimate the vibration. The MVR method is a suitable candidate to reveal whether the
math model has simulated the non-linearities and described the underlying physics
adequately. Therefore, MVR analysis will be used for this demonstration.

The Process Effectiveness Test

TEST THE SYSTEM FOR: HIGH

Having fixed the simulation method, the effectiveness of | CORRELATION AND ACCEPTABLE
. . PROBABILITY DISTRIBUTION ~ AND

data pre-processing can be assessed by evaluating the GENERALISATION ABILITY

following: -

*  The correlation between the measured and predicted vibration as well as the
slope and the y-axis intersect of the line that best fits the measured and
predicted data. A model having a correlation coefficient of 1.0, slope of 1.0 and
zero y-axis intersect corresponds to 100% normalisation.

*  The probability distribution of the normalised vibration. For healthy
helicopters, a peaky distribution with a distinct central value is expected.

*  The generalisation capability. The math model must simulate the test data with
the same accuracy obtained during training.

The results obtained by analysing data, sampled with the aircraft in stable flight at an
airspeed of 125 knots, from 457 flights involving three helicopters (G-TIGB, G-TIGC,
and G-TIGE, arbitrarily selected) indicated poor correlation between the measured
and predicted vibration; for example the correlation coefficient of the 4R lateral
vibration was 0.17. It was therefore concluded that the mathematical simulation
bascd on rotor blade tip Mach number and air density was inadequate.

o
N



3.2.5 The Process Refinements

The refinement process was initially targeted at the math model
to establish improved relationships between the FDR parameters
and the vibration. Appendix B presents the math formulations
which were used for data pre-processing as a means to enhance
the non-linear modelling capability [Reference 3|.

LOOP TO REFINE
THE FILTER,
THE MATH-MODEL
AND/OR
THE PREDICTION
METHOD

Considering the 457 flights of the three helicopters, the refined process produced the

following results:

Table 3.1
4R Vertical 4R Lateral

Correlation coefficient 0.67 0.78

Best line slope 0.98 1.0

Best line y-intersect 0.066 -0.015
SD + Mean of measured 0.23 0.516

SD + Mean of normalised 017 0.324
Spread reduction 25.8% 37.2%

The vibration traces shown in Figures 3.2 and 3.3 indicate that the normalisation has
reduced the spread of vibration between flights significantly. A successful
normalisation is expected to move flight records from the tails of the probability
distribution of the measured vibration towards the central value. Considering the
vertical vibration and referring to the frequency chart of Figure 3.4 the normalisation
moved the sample at 1.2 ips, the sample at 0.5 ips and all samples at 0.4 ips towards
the central value at about 0.2 ips. The desirable normalisation effect on the
frequency distribution is evident as can be seen in Figure 3.4.

—— Measured
= Normalised

0w W 5
h 8 QO & & -

Vibration, ips .
e & e o
Fe

w

e o
S = i
K

80 120 160 200 240
Flight number

Fig.3.2 Model-based normalised 4R
vertical vibration, G-TIGB, G-
TIGC, G-TIGE at 125 knots

0 40
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05 —— Measured
= Normalised

Vibration, ips .

0 40 80 120 160 200 240
Flight number

Fig.3.3 Model-based normalised 4R
lateral vibration, G-TIGB, G-TIGC,
G-TIGE at 125 knots
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0.6

The data set considered above is relatively small to be randomly divided into training
and test data sets. The random division of data ensures the absence of any subjective
bias. The size of each data set must be sufficient for the operational conditions
covered by one set to be similar to those covered by the other set. A sub-set of the
original data set representing all 23 Super Puma MK1 helicopters was therefore
constructed. This subset comprised records for which the 4R lateral vibration was
less than 0.7 ips, i.e. below the threshold value which would trigger engineering
concern. Only 4R lateral vibration was considered since its variance is far greater
than the variance of the 4R vertical vibration (see the SD + Mean values of Table 3.1).
The data set was divided randomly into two equal sets. The first set was used for
training and the second set was used for testing. The normalisation results are
presented in Table 3.2.

Table 3.2

4R Lateral vibration Training Testing
Correlation coefficient 0.56 0.59
Best line slope 0.999 1.03
Best line y-intersect 0.056 0.006
SD/Mean of measured 0.453 0.470
SD/Mean of normalised 0.377 0.386
Spread reduction 16.8% 19.2%

Table 3.2 indicates that the normalisation results in training are similar to those in
testing, and the frequency charts of Figures 3.5 and 3.6 indicate the favourable effect
of normalisation.

It was possible at this stage to consider filtering out the correlated noise. The
individual helicopter effects were removed as described in Section 3.2.1. Referring to
Figure 3.7, the enhanced normalisation through this process can be observed as an
increase in the peak value of the distribution.

Further refinements are possible by revisiting the math model and the correlated
noise model. While the above discussion suffices for the demonstration, it is
important to appreciate that the in-service system must be sufficiently flexible that
the refinement processes do not require the system to be redesigned.
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The Uncorrelated Noise

Having largely removed the operational influences on the FILTER THE
measured airframe vibration, and attenuated the correlated [UNCORRELATED NOISE'
noise, the normalised vibration reflects the mechanical

health state combined with random noise. The term uncorrelated is used to
emphasise that this type of noise can not be correlated with available FDR
parameters, individual helicopters or age. It can not be definitely estimated by a
system, but its statistics can be determined. This type of noise is attributed to factors
such as:

- Measurements’ accuracy and equipment’s noise.
* Different pilots flying the same helicopter.

* The flight parameters and the measured vibration are not simultaneously
acquired; the vibration of the helicopter has been evaluated from an average
over 100 main rotor cycles and the FDR parameters measured at the start of the
first cycle. This is a constraint associated with the HUMS data and not a
deliberate choice.

If the noise level is high relative to the mechanical health contribution (high noise to
signal ratio), the noise must be suppressed, e.g. by implementing a simple moving
average calculation, where the present plus a number of previous measurements are
used to compute the average. Nevertheless, care must be taken not to diminish the
health contribution. Suppression of fault induced vibration can be avoided by
evaluating a moving weighted average, where the present has more weight than the
past. Generally the noise to signal ratio can be reduced significantly by appropriate
choice of the weights in the following moving average equation:

L-N+1 L-N+1

s =L
Vi is the L" filtered value.
V, is the |" value of vibration.
W, is the weight of the " vibration value.

L indicates the present sample.
N s an arbitrary window width.
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Conclusions

As a car moves on a rough road, a high level of vibration is generated. A mechanical
fault may also induce a high level of vibration. An intelligent process that
discriminates between operational influences and fault symptoms is therefore
required (this process is called normalisation). Otherwise, the vast quantities of
HUMS data is highly likely to produce false alarms.

The essence of the normalisation process is that Flight Data Recorder (FDR)
parameters, once pre-processed, can adequately indicate the associated operational
conditions. Furthermore, given a data set, it is possible to evaluate the statistics of
the noise which may have contaminated the data. The demonstration presented in
this section has highlighted the importance of the model-based data pre-processing
where non-linear functions of FDR parameters have been deduced through a
helicopter math model. These functions have been used to mitigate the operational
influences on the measured airframe vibration. Also, the normalisation process has
implemented statistical calculations to attenuate the noise effects which can not be
consistently simulated by a model or a system.

It is important to realise that our engineering knowledge will be continuously
improved as a direct consequence of the patterns and information within the vast
amount of HUMS data. The related mathematical and statistical models will be also
enhanced. Therefore, the HUMS intelligent system must be flexible enough to
incorporate the refined knowledge without re-building the system. In other words,
the refinement processes are required to be part of the system. This report has
presented a typical example of a normalisation refinement analysis.

SUPERVISED MACHINE LEARNING
General

This section concentrates on the 3rd objective of the CAA contract 7D/S/1128,
namely demonstrating the diagnostic benefits of supervised machine learning
techniques. The demonstration involves training a Neural Network to recognise
bearing defects.

The HUMS SOAP Data

The Spectrometric Oil Analysis Programme (SOAP) data used for the purpose of this
demonstration was obtained from a CAA HUMS trial which, in part, involved Super
Puma Helicopters (see Sections 2.1.1 and 2.2.1). During the trial, two bearing faults
were reported. The first fault was a mast bearing spalling on the M186 gearbox of the
G-TIGU helicopter. The second fault was an epicyclic bearing spalling on the M285
gearbox of the G-TIGE helicopter. Eight samples from the M186 gearbox and nine
samples from the M285 gearbox were considered to be fault related samples, a total
of 17 fault cases.

Armed with the known mechanical defects, the cluster analysis of Section 2 has
indicated that raw measurements can trigger false alarms and provide poor visibility
of faults. It has been also concluded that enhanced discriminatory capability can be
realised through the following pre-processing steps:
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¢ Normalise element concentrations by a reference element concentration; filter
the correlated noise and operational cffects.

* Compute and correct wear rates. If the operational information required for
correction is not available, correct the wear rates such that a negative or zero
value is set to the previously calculated value.

* Implement a moving average on the normalised concentration levels and
corrected wear rates; filter the random noise.

As indicated above, the supervised learning process determines the relationship
between causes and effects. In this section, the effects will be considered to be
filtered pre-processed measurements: concentration levels of Fe and Al normalised
by Mg along with corrected wear rates for Fe and Mg (see Section 2.2.4). The causes
of these effects will be three gearbox bearing states: a healthy or normal bearing
(116 samples), a gearbox with a mast bearing spalling fault (8 samples) and a
gearbox with an epicyclic bearing spalling fault (9 samples). Only 133 samples were
considered since the pre-processed measurements of the remaining five samples
could not be evaluated.

4.1.2  Supervised Machine Learning

Supervised learning rclics on a priori knowledge and uses a pre-defined set of
data to solve a specific problem; this process is termed ‘training’. The training data
consists of input-output pairs; input patterns (effects) and associated desired output
patterns (causes). The learning capability of any supervised system is accomplished
through its adaptive weights (cocfficients). Training means allowing the supervised
system to adjust its weights such that the required mapping between the input and
output can be reproduced. For example, for cach input pattern in the training set,
the difference (error) between the actual output and the desired output is evaluated.
Then, the weights are adjusted to minimise the mean of the squared errors. Usually,
another set of data is used to test whether the training is successful. Only after
training, can the supervised process solve the required problem.

According to the above definition, a successful supervised process delivers
successful approximation and generalisation. Approximation may be regarded as
learning a smooth mapping or a smooth surface construction from sparse data
points. Generalisation means estimating the height of the surface where the locations
(c.g. x, y) arc not included in the training data. Interpolation is the limit of
approximation where there is no noise in the data. The information in the training
data can be insufficient to construct uniquely the mapping in regions where training
data are not available. Also, extrapolation cannot happen in any predictable way.

Traditionally, supervised learning has been based on linear Multi-Variate Regression
(MVR) analysis. The past few years however have seen a rapid growth of interest in
Artificial Neural Networks (ANNs) which can offer powerful recursive, non-linear
MVR processes.

4.1.2.1 Multi-Variate Regression (MVR) Analysis

MVR is a single-shot squared errors’ minimisation process. To illustrate this, consider
the two input measurements X and Y along with the corresponding desired output Z
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of Table 4.1 (a). An MVR process is required to predict the output Z given the inputs
XandY.

The first step in the MVR analysis is to choose a model that contemplates how the
output Z can be linearly composed from non-linear functions of input parameters. In
other words, prior engineering knowledge of the model is essential; a badly chosen
model can have a very poor generalisation capability. For the data shown in Table
4.1 (a), the exact model is Z = w, + w, VX + ;X

The second step is to evaluate the non-linear functions X,=VX and Y,= Y? for each
input pair (X,Y) as shown in Table 4.1 (b).

Table 4.1 (a) Table 4.1 (b)

Z=w;+Ws VX +w; Y2 Tadi+3Xs+2Y

X b 4 4 X=VX | Y;=Y? Y4
1 1 9 1 1 9
4 2 18 2 4 18
9 3 31 3 9 31
16 4 48 4 16 48
25 5 69 5 25 69
1 5 57 1 25 57
4 4 42 2 16 42
9 3 31 3 9 31
16 2 24 4 4 24
25 1 21 5 1 21

The third step is the training step where a Least Mean Square (LMS) algorithm is
implemented to estimate the weights w,, w, and w; such that the sum of squares of
differences between the desired Z values and the Z values as calculated from the
model is a minimum. The weights are evaluated through single-shot matrix algebra
and not through an iterative process.

Practical problems are often described by a large number of input measurements and
hence, it is possible that a number of input measurements can be linearly dependent
on other inputs. In this situation, direct LMS algorithms can give misleading results.
Singular Value Decomposition methods (SVD) are available to rectify such a
problem. It is also possible that only a sub-set of the inputs is significant, and that
the remaining measurements do not influence the desired output. In this case,
Principal Component Regression (PCR) is available to identify the principal,
significant features in the input measurements.

Artificial Neural Networks (ANNSs)

Artificial Neural Networks (ANNs) are commonly described as being analogous to
the physiology of the brain more than other kinds of information processing
methods. The brain consists of a large number of nerve cells (neurons) which send
very simple messages to cach other via connections (synapses). The power of the
mind probably stems from complicated sequential and massive parallel processing
carried out by the neurons. The neurons themselves are slow processors.




Any ANN consists of a number of processing units referred to as neurons, units or
cells. The neurons receive input values through connections. Each connection has a
specific strength referred to as its weight. The input values to a neuron are referred
to as the neuron input pattern (or input vector). The weights of the connections that
deliver the input pattern are referred to as the weight pattern (or weight vector). The
basic building block of the ANNs is the neuron and its connections; a detailed
description is presented in Appendix C. Generally, each neuron performs three
computational tasks:
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Fig.4.1 A neural network neuron

®*  Scale (or shift) the nceuron input values using the connection weights which
deliver these values. Often, this is achieved by either multiplying cach input by
the weight of its connection or by evaluating the difference between the input
and the weight.

*  Combine the scaled input values into a single value.

* Apply a non-lincar function (activation function) to the combined value to
produce the neuron output (activation). The non-lincar function squashes the
combined input, which can vary from — ee to + e, to finite values (e.g. values
between 0 and 1).

Figurc 4.1 summaries the general computational tasks of the ncuron. The MVR is a

special case of this general case where only one unit without a squashing function is
usced to combine its inputs lincarly.
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The neuron receives four types of inputs:

* Inputs from external sources. For example, the inputs may be N numbers that
represent the concentration of elements in SOAP samples or amplitudes and
phases of vibration signatures.

®* A constant internal input referred to as the bias.

*  The feedback from the neuron to itself. The current and previous (delayed)
outputs may be feedback to the unit.

*  Input from other neurons. The current and/or delayed outputs of a unit may be
feedback to other units.

The inputs to a neuron may not necessarily comprise all types of input. For example,
some neurons may receive inputs from external sources only. Networks that have
feedback loops are referred to as dynamic or recurrent networks as opposed to static
networks which are those without feedback.

A neural network learns from a set of data how to solve the problem, typically by
adjusting its weights. The learning is either supervised learning, reinforcement
learning or unsupervised learning. In supervised learming, the training data
consists of input and ‘known desired output’ pairs. The weights are adjusted such
that the network predicts the output given the input. In reinforcement learning, a
global reinforcement signal is used and the probability distribution associated with
cach local variable (such as a weight) is changed in order to increase the expected
reinforcement. In unsupervised learning the input patterns are grouped into
clusters such that the patterns in each cluster are similar. The learning may be based
on deterministic procedures or stochastic ones such as the Boltzman machine.

The feed-forward networks are the most frequently used networks, perhaps, because
of their simple architectures and publicised training procedures as well as their
capability to classify patterns, approximate functions and simulate arbitrary Boolean
expressions such as AND, OR and XOR. The external input (X1, X2, X3, ...) is passed
forward to the neurons of the first hidden layer through unidirectional connections.
The name ‘first hidden layer’ is used because this layer is the first active layer that
performs computational tasks and it is hidden from the external environment; the
layer does not receive input from external sensors or send output out of the system.
Each hidden layer feeds its output to the following layer. The last hidden layer feeds
its output to an output layer, which may consist of more than one nceuron. The
network has no feedback connections from a unit to itself or from a unit to another
unit on a preceding layer. Most of the learning algorithms of this type of networks
utilise a supervised LMS learning technique which starts with an initial guess of
weights and then searches for optimum weights using a recursive update. For
example the back-propagation algorithm of Reference 4 is based on this technique.

Other types of neural networks include self organising maps and Adaptive
Resonance Theory (ART) networks which belong to a category of learning called
competitive, unsupervised, or self-organising. The ART networks prevent previously
lecarned knowledge from being washed away by new learning, and cnables new
learning to be automatically incorporated into the total knowledge base of the
system in a globally self-consistent way. Interested readers can refer to Reference 4
and the literature cited in Reference 5.
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Demonstration of the Benefits of Supervised Learning

In Section 2, four pre-processed features were evaluated from three clements’
concentration levels (Fe, Al, Mg). The possible random noise in these features were
filtered using a moving average. The four features are as follows:

*  Fe normalised by Mg. ¢ Al normalised by Mg.
*  Fe corrected wear rate. * Mg corrected wear rate.

The unsupervised process of Section 2 has indicated that these features can yield
clear fault visibility.

The four features were evaluated for 133 samples relating to three bearing states;
healthy state (116 samples denoted by H), an epicyclic bearing spalling (9 samples
denoted by F) and a mast bearing spalling (8 samples denoted by G). For the
purpose of this demonstration, the available data are split uniformly into a training
data set and a test data set.

MVR Analysis

The use of MVR analysis for supervised classification purposes is not a straight
forward task and requires a carefully chosen strategy. The strategy used in this
section considers three MVR units and a logical gate.

The task of the first MVR unit is to discriminate between the two bearing faults F and
G. The task of the second MVR unit is to discriminate between H and F. The third
unit discriminates between H and G. The logical gate interprets the output of the
three units and issues diagnostic reports.

Five F samples and four G samples are considered and the associated four pre-
processed features are presented to the first MVR unit with the known causes for
training. Successful training implies that the weights are adjusted to describe a plane
that separates the F and G states. For two inputs the plane is reduced to a straight
line, and for more than three inputs, the plane is called a hyper plane. The output of
the MVR unit indicates the distance of a sample from the hyper plane. The trained
MVR unit was tested using the remaining four F samples and four G samples and
found to discriminate successfully between the two states. Figure 4.2 shows the
output of the unit (training and test results). It can be seen that the points at one side
of the hyper plane (above 2 on the y axis) represent the epicyclic bearing fault and
those on the other side (below 2 on the y axis) represent the mast bearing fault
indicating 100% success rate in both training and test.
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Similarly, the second MVR unit is trained using 5 F samples and 58 H samples and
tested using 4 F samples and 58 H samples. Figure 4.3 shows the output of this unit
and indicates 100% success rate in training and test. The F samples are above 2 and
the H samples are below this level. It is worth mentioning that the samples are
presented in a chronological order and, generally, each training sample is followed
by a test sample. Referring to Figure 4.3, the response of the MVR unit to the F
samples starts with a value just above 2, peaks at the fourth sample to a value of 2.8
and returns to a value above 2 at the 9" sample. This can be atributed to both the
moving average effects and the fault mode. It is anticipated that the wear mode of a
bearing fault can change with time; for example, the wear mode can change after the
crosion of the plating material on bearing cages.

The third MVR unit is trained using 4 G samples and 58 H samples and tested using 4
G samples and 58 H samples. The unit output shown in Figure 4.4 indicates that the
hyper plane can not separate the two states. The output levels of both the H and G
samples are below 2 and overlap for all samples with the exception of one G sample.
It secems that the mast bearing fault samples occupy a part of the feature space
surrounded by healthy samples. In such a situation, a hyper plane is not the right
choice and a hyper sphere or ellipsoid can offer better discrimination. Therefore, an
MVR is allowed to adjust its weights using the training set described above such that
the optimum size and location of the hyper ellipsoid that can separate the two states
is determined. In training, 2 G samples and 58 H samples are correctly identified. In
testing, 2 G samples and 57 H samples are correctly identified. One H sample is
classificd as a G sample which is one false alarm in 116 H samples. Figure 4.5 shows
the output of this non-linear MVR unit. The term non-linear is used to indicate that
the target is to define a non-linear separator (ellipsoid) not a linear separator (plane).
The output of the unit for 4 G samples is definitely above 2. The other four samples
arc on the border between the two states. The degree of membership of these
samples to each state can be determined and used for prognosis.

In the training strategy described above, samples describing only two bearing states
arc presented to cach unit. The question now is what is the response of a unit
trained to discriminate between F and H to G samples? In this case, it is not known
where the G samples will be relative to the hyper separator. Thus, if an unknown
sample is presented to the unit, the output can only indicate that the sample is F or G
on one side of the hyper plane or, H or G on the other side. In other words, the
output of cach MVR unit indicates not a single state but two states as shown in the



Study |

following table (the symbol U is the union or the OR operator. O,, O, and O, refers
to the three unit outputs):

trained on

Unit 1 F G
Unit 2 o H
Unit 3 G H

0,, O, and O; indicates

either or

FUH GUH
FUG HUG
GUPF HUF

The logical gate examines the output of the three units and evaluates the diagnostic
report as follows:

The MVR output

The bearing state = O, N O, N O,
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Fig. 4.5 A mast bearing fault as identified by
a non-linear MVR from pre processed Fe,
Mg and Al (Super Puma) linear MVR

The symbol N is the intersection operator or the AND operator. For example, if the
output of the three units is G U H, F U G and G U F, then the output of the logical
gate will indicate the G fault. The collective results of the MVR system (three units
and a logical gate) indicate 100% detection rate of the F state, 50% detection rate of
the G state and one false alarm in 116 samples. It is worth mentioning that a
magnetic chip detector indicated the mast bearing fault a few hours prior to the head
replacement at 6794.35 flying hours. In Figure 4.5, the maximum response to the G
state occurs at the fourth, fifth and sixth samples which were taken at 6624, 6640 and
6743 flying hours. This suggests that if the techniques described in this report had
been available, pre-processed SOAP measurements would have indicated the mast
bearing spalling 170 to 51 hours before the magnetic plug.

The above discussion not only demonstrates the benefits of supervised machine
learning in the form of MVR systems but also provides a generic analysis for a
supervised classification process. It breaks down the process to three operations:

The construction of a series of hyper surfaces using computational units.
The use of a learning rule (LMS rule) to optimise the size and location of these

surfaces.

The implementation of logical gates to evaluate the output of the computational
units and issue the classification report.
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Supervised Artificial Neural Networks

A neural network classifier implicitly combines the above three operations in a single
architecture. Figure 4.6 (a) shows an ANN of 4 input units and 3 output units (white
circle), and 7 computational units in two hidden layers (black circles). The 7
computational units can implicitly (and perhaps collectively) construct the hyper
separators and act as logical gates. The analysis of the previous section is therefore
very relevant to neural networks. Nevertheless, it is important to appreciate the basic
differences between MVR and ANN based systems:

Epicyclic Mast

Healthy fault fault 10
| ; M Detected
L OMissed
: 2 6 1
o
x-98
T
‘ _é il
z
0 { i 4
epicyclic mast false unknown
alarms

Fig.4.6 (b) The performance of the 4-4-3-
Fig.4.6 (a) A fully connected 4-4-3-3 3 neural network
feed-forward neural network 2 :

* The three supervised operations are performed explicitly by the MVR system,
and hence, the analysis of the system results is straight forward. At present, it is
not possible to rigorously identify bow an ANN has solved a particular
problem, and hence it is difficult to analyse the results and systematically judge
whether the trained network has been well trained or not. Nevertheless, this is
currently achieved by testing the performance of the trained network using the
test data which has not been used during training. If this data and the training
data do not cover the required operational range however, the results of the test
will be questionable.

* The guidelines for ANN design and training are much simpler than those for an
MVR. For example, the number of units of an MVR system is a function of the
number of classes and different training and test data sets used for the various
units. The construction of non-linear hyper separators is not an easy task. For
the ANN system, it suffices to specify a sufficient number of units and only one
training data set and one test data set are used.

* The learning rule of the MVR is a single-shot rule as opposed to the recursive
rule of the ANN and hence, the time required to train the MVR can be much less
than that required to train the ANN. Nevertheless, the memory requirement of
the recursive algorithm is much less than that of the MVR and hence, a large
data set can be used for training.

*  The ANN can be regarded as a generic recursive, non-linear mean square errors’

minimisation tool. The ANN automatically defines the appropriate degrees of
the various non-linear hyper separators.
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The 4-4-3-3 network shown in Figure 4.6 (a) was trained using 5 F samples, 4
G samples and 58 H samples. After 4000 iterations the network was found to classify
all F and H samples correctly. Three G samples were correctly classified and the
fourth G sample is classified as H. The ANN was tested using 66 samples (4 F, 4 G
and 58 H) of which 64 samples (4F, 57 H and 3 G) were correctly classified. One H
sample was classified as G; one false alarm in 116 H samples. Also one G sample
was classified as an H sample. It is apparent that the hyper non-linear separator of
the ANN is more accurate than the hyper ellipsoid of the MVR; 6 G samples were
correctly classified by the ANN as opposed to 4 samples identified by the MVR. By
increasing the number of iterations to 5000, the performance of the network was
improved and the false alarm was eliminated. Figure 4.6 (b) summarises the training
and test results and indicates 100% detection rate of the F state, 75% detection rate of
the G state along with 0% false alarm.

Epicyclic Mast 87 M Detected
OMissed I

-

Number of cases
(5]

0
epicyclic false
alarms
Fig.4.7 (a) A fully connected 7-4-3 feed- Fig.4.7 (b) The performance of the 7-4-3
forward neural network neural network

Although the literature survey of Reference 5 has indicated a customary use of a
single hidden layer architecture, the two hidden layer was found to provide more
accurate results and better generalisation. The second layer condenses the output of
the first layer further which makes the various classes more distinct and the output
more accurate. The second hidden layer can also be considered as an independent
logical gate acting on the hyper surfaces described by the first hidden layer.
Combining the two operations in one layer seems to be inefficient. To illustrate this,
an ANN of a single hidden layer is considered (a 4-7-3 network). The number of
computational units is chosen to be the same as that of the two hidden layer network
(7 units). At first sight, it seems that the computational power of the 4-7-3 is more
than that of the 4-4-3-3 network; the number of unidirectional connections of the 4-
7-3 ANN is 49 connections as opposed to 37 in the case of the 4-4-3-3 ANN.
Nevertheless, the training and test of the 4-7-3 ANN using the same data sets and the
same number of iterations (5000 iterations) indicate that the efficiency and
generalisation capability of the 4-4-3-3 ANN is better than that of the 4-7-3 ANN.
Figure 4.7 (b) shows the results of training and test and indicates 88% F state
detection rate, 75% G state detection rate, 5.3% unknown states (samples cannot be
classified) and one false alarm in 116 H samples.

The responses of the three output units of the 4-4-3-3 ANN to the training and test
samples are presented in Figure 4.8 and 4.9. For a successfully trained ANN, it is
expected that an input pattern will activate only the unit representing the class to
which the pattern belongs. In Figure 4.8, the 9 F samples have activated the epicyclic
unit (desired output of about 0.9). Meanwhile, the responses of the healthy and mast
fault units have corresponded to the minimum desired response which is 0.1. Figure
4.9 indicates that all healthy samples have activated the expected unit. Referring to
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Figure 4.8, the second and third G samples have incorrectly activated the H unit and
four samples produced correct activation values; activation values above 0.5 for the
G unit and below 0.5 for the other units. Sample 5 is considered to be indicative of
the mast fault since the G unit has the highest activation value.
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Fig.4.9 The 4-4-3-3 neural network responses to the healthy cases

In Sections 2 and 3, the benefits of model-based data pre-processing have been
demonstrated. In order to further demonstrate the importance of data pre-
processing, a 4-4-3-3 network was trained and tested using the same data sets.
However, the four inputs used in this case were raw concentration levels of Fe, Mg,
Al and Ag. After 5000 iterations only 2 G cases were correctly classified. All other
training and test samples were classified as H.

Diagnostic Reports

The remaining important task of the supervised process is to establish the practical
interpretation of the process output which can offer a robust diagnostic. The criteria
that define a robust diagnostic are as follows:

* A fault must be identified before it can cause a catastrophic failure or excessive
maintenance costs.

*  The number of false alarms must be minimum. In a practical situation, removing
all false alarms can result in reducing fault visibility.

The demonstration of the previous section suggests two warning messages which a
line engineer can readily understand:

*  The first message will be triggered if the output of a fault unit is well above the

minimum value (0.1) but below a predefined maximum value (0.8), e.g. the first
sample of the mast bearing fault. The message will indicate a possible

36



W
W

.

5.2

2

Study |

component fault but costly maintenance actions will not be recommended. The
message is stored and the unit activation value which can reflect the fault
intensity is closely monitored.

* The second warning message will be triggered if the output of a fault unit
reaches the maximum value (e.g. the fourth and fifth samples of the mast
bearing fault). The end results will be a work card, cross referenced with the
appropriate section in the maintenance manual.

Conclusions

The function of the supervised process is to draw more precise boundaries around
cach mechanical state and offer robust diagnosis. The process captures cause-effect
rclationships, even when the precise relationships cannot be explicitly expressed.
This has been demonstrated in this section by training a Multi-Variate Regression
system and an Artificial Neural Network as a means to discriminate between the
three mechanical states. The training data has contained the known mechanical
states (causes) and the associated pre-processed measurements (effects). Testing the
systems by presenting pre-processed measurements which have not been used for
training has indicated that robust diagnosis is possible. For example, the neural
network has classified correctly 100% of the epicyclic bearing spalling related
samples, 75% of the mast bearing spalling related samples and 100% of the normal
bearing related samples. Only two mast bearing related samples have been mis-
classified as normal samples. These two samples had been taken from the M186
gearbox about 239 hours before a magnetic chip detector indicated this fault.
Nevertheless, the network output has indicated that early detection of the mast
bearing fault would have been possible 170 hours prior to the magnetic plug
diagnosis. By analysing the MVR and ANN results, it has been demonstrated that the
output of the supervised process could be presented in a work card form.

THE INTELLIGENT DATA MANAGEMENT SYSTEM
General

Section 2 has demonstrated the benefits of unsupervised learning techniques,
Section 3 has indicated the importance of data pre-processing, and the benefits of
supervised learning techniques have been presented in Section 4. This section
concentrates on the 5™ objective of the CAA contract, namely demonstrating the
performance of an IDM system by identifying its ability to recognise previously
reported and unreported features in HUMS data.

The Intelligent Data Management Process

A practical IDM system needs to offer a framework that is capable of organising
intelligent interactions between data pre-processing, unsupervised learning and
supervised learning.

The IDM Process

The IDM process of this section starts by identifying initial data pre-processing

methods that condition the data before it is operated upon. The unsupervised
lcarning core algorithm is applied on the pre-processed data in order to identify
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atypical data patterns even when the cause is unknown. If component samples
persistently fall into atypical data clusters, inspection is triggered in order to identify
the cause. Initially, the inspection is not expected to identify component faults.
However, the inspection results can be used as a means to refine the data pre-
processing methods in order to enhance the fault visibility and reduce the number of
falsc alarms. In Section 2, it has been demonstrated that the unsupervised process
can achieve its main objective and identify atypical, significant clusters.

As mentioned in Section 1.1.3, the initial choice of a set of features (attributes)
defines the frame of reference within which the clusters relevant to these features
can only be identified. Therefore, the selected features must be relevant to the pre-
defined purpose of the unsupervised process. For example, if the purpose of
analysis is to identify product patterns which appeal to the consumer, the colour and
geometric shape of the product can be significant features. For the purpose of this
demonstration, the IDM process is targeted at the identification of non-adjustable
faults in the main rotor system with particular reference to frequency adaptor faults.
The relevant features are considered to be harmonics extracted from vibration
measurements combined with blade positional information at various operational
conditions.

Frequency Adaptor Faults

The stiffness and damping values of a faulty frequency adaptor are considerably
dissimilar to those of normal units. The drag-wise lag deflection is proportional to
both the stiffness and the drag-wise loads. Therefore, the tip lag displacement can be
used in order to identify a faulty frequency adaptor. If a frequency adaptor of a blade
is stiffer than those of other blades, this blade will lead the other blades in climb and
hover (relatively high loading conditions). In descent and at MPOG (Minimum Pitch
angle On Ground), the blade will lag the other blades (or lead by values less than
the climb-hover values). It is also expected that the value of the 1R lateral vibration
phasc angle in climb (or hover) will not be the same as the value in descent (or
MPOG). These signatures have been proposed to identify a faulty damper. The
stiffness of a frequency adaptor S, can be expressed as follows:

1/5,=D,/F4+E|1/S],i=1,b (5.1)
where:: S, is the stiffness of the i frequency adaptor.
D, is the difference between the lag values in climb and
descent of the i blade.
F., is the difference between the loads in climb and
descent at 180 degrees azimuth.
E|| is an operator that evaluates the expected value
of the operand between square brackets.
b is the number of blades.

The load evaluation is beyond the scope of the current investigation. Therefore, it is
only possible to assume that the stiffness of the first adaptor and the value of F_, are
known. In this case, the stiffness of the other adaptors can be determined from the
cquation:

Frd/si = Fx'(l/sl g (DI_DA) s i= 2, b (S 7)

e
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The value of F_,/S, for this report was estimated from flight and test measurements.
This value must be greater than the maximum value of ‘D,-D;, otherwise, the
solution indicates a frequency adaptor of negative stiffness or an infinitely rigid
adaptor.

A comprehensive mathematical model [Reference 6| has been implemented to
investigate the track-lag disparities which can be induced by a faulty frequency
adaptor, an adjustable pitch link error and various blade irregularitics. The model
simulates a non-uniform induced velocity wake, detailed non-linear acrodynamic
data and a non-linear flap-lag-torsion motion. The model combines the dynamics of
the rotor, the fuselage, and other components. The model has highlighted the
practical difficultics that can arise because of the shared symptoms between the
frequency adaptor fault, the pitch link error and blade irregularities; the symptoms of
one of these faults can be similar to those of another. Therefore, it has been
concluded that not only the frequency adaptor fault manifests itself through features
extracted from low and high loading conditions, but also other main rotor non-
adjustable faults.

Essential to the successful estimation of the frequency adaptor stiffness is the
removal of the effects of main rotor adjustable faults which can be mass unbalance,
tab ecrror and pitch link error. In this report, these effects are estimated from
vibration and track measurements in cruise and at MPOG using measured
sensitivitics. Nevertheless, it has been found that the values of the measured
sensitivitics need revising and hence, the estimated values of adjustable faults are not
expected to be accurate.

The HUMS Data

A data sct from the HUMS database was used to establish and refine the
unsupervised process. The data was pre-processed before the clustering analysis.
Another data set was used to test the significance of the analysis and demonstrate the
performance of the IDM process by establishing its ability to recognise previously
reported and unreported features in HUMS data.

The Training Data

A HUMS data sct covering the period from 1/1/1994 to 31/8/1994 was used to refine
the IDM process as described in Section 1. The data set was extracted from 5585 data
downloads; most of the downloads were associated with revenue carning flights.
Vertical and lateral vibration harmonics along with track and lag measurements from
the following 23 Super Puma MK I helicopters were used for the purpose of this
demonstration: G-BLPM, G-BLRY, G-BLXR, G-BLXS, G-BMCX, G-BTCT, G-TIGB, G-
TIGC, G-TIGE, G-TIGF, G-TIGG, G-TIGI, G-TIGK, G-TIGL, G-TIGM, G-TIGO, G-
TIGP, G-TIGR, G-TIGS, G-TIGT, G-TIGU, G-TIGV and G-TIGW. The vibration
harmonics were extracted at multiples of the main rotor frequency. The number of
maintenance actions which corresponded to the 5585 downloads was 2193. The
maintenance actions included the following 138 main rotor non-adjustable
maintenance actions:

39



5.3.2

Study |

Table 5.1
No.offaults |  fault description
11 Main rotor frequency adapter pair replaced.
45 Main rotor replacement of blades.
42 Main rotor assembly refitted/replaced.
17 Main rotor pitch rod replaced on a blade.
10 Main rotor support struts refitted/replaced.
13 Main rotor spindle replaced on a blade.

Data Pre-processing

Practical experience and mathematical models suggest that the faults of interest can
manifest themselves through features extracted at high and low loading conditions
(see section 5.2.2). Therefore, only climb, descent, cruise and MPOG measurements
were selected and stored in a database. The database consisted of 17062 records of
which 1295 records were associated with maintenance actions. Each record
contained information about a test point such as climb and each download
contained a number of test points. Vibration measurements and track and lag
displacements were filtered using the following linear filter:

L-N+1 L-N+1
Ve=(Z VW) (X W,) (5.3)
i=L i=L

Vi is the L™ filtered value.

V, s the j" raw value .

W; is the weight of the " raw value.
L  indicates the present sample.

N is the window width .

For cach helicopter, the width of the window was increased from a value of 1 up to
a value of 7, and then kept constant at a value of 7. After each maintenance action,
the width of the window was re-set to a value of 1. In this way, the noise in the first
record is not influenced at all by the averaging process (window width of 1), and the
noise in the second record is slightly reduced by averaging the values of the first and
the second samples. Therefore, the first five records following a maintenance action
were removed to ensure that the random noise was adequately attenuated. Each
flight that contained information about climb, descent, cruisec and MPOG was
considered, and the information was stored as a record in another database table.
The database table consisted of 1358 records. It was assumed that maintenance
actions associated with vibration alerts could have been carried out up to 14 days
after the alert. There were 1637 such maintenance actions. These included the
following 104 main rotor non-adjustable faults:

40



Study |

Table 5.2

No.offaults | faultdescription
10 Main rotor frequency adapter pair replaced
35 Main rotor replacement of blades.
31 Main rotor assembly refitted/replaced
13 Main rotor pitch rod replaced on a blade
8 Main rotor support struts refitted/replaced
7 Main rotor spindle replaced on a blade

Adjustable main rotor faults, namely mass unbalance, tab errors and pitch link errors
which could have been associated with each record, were estimated by an RTB
algorithm from the filtered measurements in cruise and at MPOG. The influence of
these faults on vibration and blade displacements were removed by the RTB
algorithm. Diagnostic features were extracted from the residual vibration and blade
displacements. The features were ratios between vibration amplitudes, differences
between phase angles (cruise-MPOG and climb-descent) and predicted stiffness
values of blades’ frequency adaptors. The stiffness values have not previously been
reported by the HUMS system. The IDM analysis of this report was based on these
features.

The Test Data

A data set covering the period from 14/8/1994 to 6/11/1994 was used to test the
significance of the cluster analysis. The data represented 1812 downloads of which
1412 downloads did not overlap with the training data. The overlapped data was
only included to ensure smooth filtered results and, was not used in testing. The data
was gathered from the following 20 helicopters: G-BLXR, G-BLXS, G-BMCX, G-
BTCT, G-TIGB, G-TIGC, G-TIGE, G-TIGF, G-TIGG, G-TIGI, G-TIGK, G-TIGL, G-
TIGM, G-TIGO, G-TIGR, G-TIGS, G-TIGT, G-TIGU, G-TIGV, G-TIGW. The number
of maintenance actions which corresponded to the 1412 downloads was 459. The
maintenance actions included the following 30 main rotor non-adjustable
maintenance actions:

Table 5.3
No. of faults | h ~ fault description
4 Main rotor frequency adapter pair replaced
11 Main rotor replacement of blades.
12 Main rotor assembly refitted/replaced
3 Main rotor pitch rod replaced on a blade
0 Main rotor support struts refitted/replaced
0 Main rotor spindle replaced on a blade

The test data was pre-processed in the same way as the training data. The
measurements which had been acquired in climb, descent, cruise or MPOG were
filtered and the first five records succeeding a maintenance action were removed to
ensure that the random noise was adequately attenuated in the remaining samples.
Each flight that contained information about climb, descent, cruise and MPOG were
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considered and represented by a database record. This resulted in a database that
consisted of 446 records. The number of distinct maintenance actions which were
carried out within a 14 day period and associated with these records was 336.
Removing the overlap with the training data, the numbers of records and
maintenance actions covering the period from 1/9/1994 to 6/11/1994 were 385 and
277 respectively. The maintenance actions during this period included the following
19 main rotor non-adjustable maintenance actions:

Table 5.4

No. of faults

 faultdescription

Main rotor frequency adapter pair replaced.

Main rotor replacement of blades.

Main rotor assembly refitted/replaced

Main rotor pitch rod replaced on a blade

Main rotor support struts refitted/replaced

OO |W|N|0 |—=

Main rotor spindle replaced on a blade

Demonstration of the Performance of an IDM System
Pre-processing and Features Selection

The following list summarises the data pre-processes applied and describes the
features selected:

®* Vibration harmonics along with relatve main rotor blade track and lag
displacements were extracted from HUMS data downloads.

* A linear filter was applied to attenuate the random noise (the non-correlated
noise).

*  The influences of adjustable main rotor faults on measurements were removed.
These influences can be considered as correlated noise effects. An RTB
algorithm using the Singular Value Decomposition (SVD) method was
developed for this purpose.

* The following four features were selected: the differences between the stiffness
values of opposite blades (D1 and D2), the ratio between the amplitudes of the
1R lateral vibration in climb and descent (R1LAC) and the difference between
the phase angles of the 1R lateral vibration in climb and descent (R1LPC). This
sclection was based on practical experience and substantiated by mathematical
models.

Unsupervised Learning

Each feature was scaled (divided by its standard deviation) and an optimised —
iterative — self-organising data clustering algorithm was implemented. The clustering
analysis of the pre-processed training data (Section 5.3.2) produced 6 clusters. The
first and sccond clusters contained two flight records (samples) having very high
R1LAC values indicative of faulty sensors (118.97 ips and 54.952 ips) and, hence, can
be considered as outlying clusters. The third and sixth clusters (51 and 592 samples)
arc characterised by small R1LPC values. The fourth and fifth clusters (189 and 524
samples) can be identified by relatively high values of D1 or D2 along with high
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values of R1LPC. Considering the number of samples in each cluster, and ignoring
the outlying samples, two atypical candidates were nominated based on a relatively
small number of samples. These were cluster 3 and cluster 4. Whilst the
unsupervised analysis of the training data was not used to trigger alarms, the
maintenance actions which could be associated with the clusters were scrutinised
and listed in Table 5.5.

Table 5.5 Unsupervised cluster analysis of the training data

fustorsedaioumber | 1 | 213 4 5 86 h B B =W B s
L ~ Number , TR

Number of helicopters in | 1 1 5 ]2 23 |16 | 1.6 | 7.9 |19.0|33.3|36.5
the cluster

(samples)=1358

maintenance actions
=1961

adapter pair replaced

of blades.

Main rotor assembly 0 0 2 3 19 14 | 00 | 0.0 | 5.3 | 7.9 | 50.0 | 36.8
refitted/replaced

Main rotor pitch rod 0 0 0 0 11 3 00 (00| 00|00 (786|214

replaced on a blade

refitted/replaced

replaced on a blade

As can be seen, cluster 3 did not portray main rotor frequency adaptor faults. Cluster
4 contained 50% of the frequency adaptor faults and a number of non-adjustable
main rotor faults. Cluster 5 (38.5% of the samples) which was considered typical,
contained the other 50% of the frequency adaptors’ faults. The relative size of cluster
4 (13.9%) and the number of the faults of interest within the cluster (19 faults; 18.2%
of the non-adjustable rotor faults) suggested that the clustering results were
insignificant and could produce a large number of false alarms.

The Refinement Process

The unsupervised process can be refined by:

* mathematical models: a better understanding of the underlying laws of
physics can bring to light new features and enhanced strategies that allow
discrimination between typical and atypical samples and split the atypical

samples in a robust way.

* selected features: a larger set of features or another set can provide better
discrimination capabilitics.

* another cluster algorithm: it is likcly that one cluster algorithm can reveal
aspects of a problem which can not be seen by another algorithm.
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A frequency adapter fault can manifest itself through features emerging from direct
comparison between high and low loading conditions; this is the fundamental
hypothesis of the model upon which the analysis was based. Whilst a
comprehensive mathematical model was used to validate this practical observation,
it was not used to construct a better model or enhance the existing one. The
favourable impact of the use of the laws of physics have been demonstrated in
Sections 2 and 3 and therefore, this demonstration has concentrated on the other two
methods of refinements.

5.4.3.1 Features’ Selection

Study |

Three additional vibration amplitude ratios were introduced to characterise the 1R
lateral and vertical vibration ratios between cruise and MPOG (R1LAF and R1VAF)
and the 3R vertical vibration ratios between climb and descent (R3VAC). These ratios
could be, to a great extent, insensitive to fault intensity but sensitive to fault types
and, therefore, would entail better discrimination. The optimised — iterative — self-
organising clustering analysis and the subsequent examination of the associated
maintenance actions produced the following results:

Table 5.6 Unsupervised cluster analysis of the training data

Cluster | No. of Number of | Frequency Main rotor Main characteristics of
number | Samples| associated | adaptors’ |  non- | Standardised features
‘o | maintenance | fauns | ®djustable | (cluster centres)

actions fauits
1 1 0 Very high R1LAC
2 1 0 Very high R1LAC
3 1 29 1 13 Very high R1VAF
4 2 48 0 2 Very high R1VAF
5 6 0 0 0 Very high R3VAC
6 20 129 13 19 High R1VAF, R1LPC, D1, D2
¥ 26 69 1 [ 2 Very high R1LAF
8 53 121 0 10 Moderate R1VAF and D1
9 80 169 2 17 High R3VAC
10 218 333 3 174 Very high D2 and high D1
11 385 526 3 28 Very high D1
12 565 742 3 43 Small values of D1 and D2

By considering the size of clusters and the degree of persistence of helicopter
samples in a cluster, the significance of the unsupervised process can be assessed.
Bearing this in mind, clusters 1 to 4 could be considered atypical outlying clusters
because of their small number of samples that had very high vibration indicative of
faulty sensors. Clusters 5 to 9 would have been regarded as atypical clusters that
could relate to the faults under consideration in some sense. It turned out that cluster
5 did not relate to the main rotor non-adjustable faults and, cluster 8 did not indicate
frequency adaptor faults. The total number of the frequency adaptor faults which
were associated with clusters 5 to 9 (13.6% of the samples) was found to be 6. For
clusters 10 and 11, the total number was found to be 6. The results of Table 5.6
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5.4.3.2

Study 1

suggested that further unsupervised analysis of the majority clusters will be required
especially if the number of features is relatively large.

Supervised classification

Most of the cluster algorithms are sensitive to the initial statistics of the data and
hence, the boundary of the clusters can be unstable. In other words, the addition of
a small number of samples can significantly change the position of these boundaries
if the statistics of the new samples are different to those of the initial samples. A
technique such as the Adaptive Resonance Theory (ART) of Reference 7 which
possesses relatively stable boundaries and produces new clusters, is expected to
benefit the IDM system. Nevertheless, each cluster technique can only be optimised
to highlight some aspects of the problem under consideration. Therefore, the
inclusion of more than one algorithm is recommended. This will require the
introduction of an intelligent interpreter that can manipulate the results of different
algorithms and produce collective conclusions.

Whilst the resources of the current project did not allow for further investigation into
the above issues, another supervised clustering algorithm was introduced for the
purpose of the demonstration. The algorithm was driven by fuzzy rules. Two sets of
rules were chosen based on experience. The first set implemented the following
features, D1, D2, R1LAC, R1LPC, R2LPF, R3LPC and R3VPC (Note that in R1LAC, the
sccond letter indicates the harmonic number, the third indicates Lateral or Vertical
vibration, the fourth indicates Amplitude or Phase angle, the fifth indicates cruise-
MPOG (F) or Climb-descent features). The second set implemented the following
features: D1, D2, R1LAC, R1LPC, R2LPC, R2LPF , R3LPC and R3VPC. The statistics of
the data were used to determine the feature values that could enable the rules to
split the data into minority and majority clusters. The split criterion constructed a
minority class having the least possible number of samples and the maximum
possible number of frequency adapter maintenance actions. In this way, cach
supervised clustering analysis produced a minority cluster and a majority cluster. The
statistics of the minority cluster obtained along with the associated maintenance
actions were as follows:

Table 5.7 Supervised classification of the training data; minority cluster

details

Atypical cluster produced by : Set 1 Set 2
P - - ey B iy
Number of helicopters in the cluster 11 48 8 35
Number of records (samples) 95 7 49 3.6
Number of associated maintenance actions 259 16 261 26
Main rotor frequency adapter pair replaced 2 50 > 50
Main rotor replacement of blades. 9 26 8 23
Main rotor assembly refitted/replaced 5 16 4 13
Main rotor pitch rod replaced on a blade 6 46 5 38
Main rotor support struts refitted/replaced 4 50 3 38
Main rotor spindle replaced on a blade 2 29 2 29




5.4.4
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It is clear that the above results are more significant than those produced previously, the
size of the atypical cluster is small (7% and 3.6% ) and the concentration of fault cases is
high (50% of the frequency adaptor faults and, 30% and 26% of the main rotor non-
adjustable faults). Care must be taken, however, not to over-model and produce a very
small cluster which is only significant for the training data. Over-modelling can be
avoided by careful training and thorough understanding of the laws of physics.

Analysis of the Test Data

Having used the training data to refine the IDM process, the first set of rules was
used to cluster the test data which covered the period from 1/9/94 to 6/11/1994 (the
pre-processed test data of Section 5.3.3). The clustering analysis produced two
clusters; a minority cluster and a majority cluster. The minority cluster was
considered to be an atypical cluster. This cluster contained 34 samples (8.8%). The
number of associated maintenance actions was found to be 75 (27%). The following
table shows the atypical samples’ detail.

Table 5.8 Classification of the test data, minority cluster details

Record | Tail-No date comments
1 GBLXR | 4/10/1994 (1) There were no associated maintenance actions during
2 GBLXR | 4/10/1994 this period,
13 GBLXR | 29/10/1994 | (2) There were four persistent samples (15 to 18)..
15 GBLXR | 1/11/1994 (3) The last flight is contained in the atypical cluster
16 GBLXR | 2/11/1994 Actions: alarms were triggered to the line engineer.
17 GBLXR | 4/11/1994 Response on the 26/11/94: The helicopter is undergoing
18 GBLXR | 5/11/1994 heavy maintenance.
133 GTIGE 2/ 9/1994 The maintenance actions included main rotor blade
134 GTIGE 8/ 9/1994 replacement and main rotor assembly maintenance.
143 GTIGE 14/10/1994 | Actions: actions were not required
144 GTIGE 14/10/1994
212 GTIGK 19/ 8/1994
238 GTIGK 29/ 9/1994 | The maintenance actions included main rotor blade
239 GTIGK 4/10/1994 replacement on 28/10/94
241 GTIGK 4/10/1994
242 GTIGK 5/10/1994 Actions: actions were not required
247 GTIGK 17/10/1994
248 GTIGK 18/10/1994
353 GTIGT 25/9/1994 | There had been three persistent samples (374, 375 and
355 GTIGT 26/ 9/1994 | 376) after which the helicopter migrated to a majority
356 GTIGT 26/ 9/1994 | cluster (two flights). Tail rotor maintenance was carried out
37 GTIGT 17/10/1994 | on 4/11/94.
372 GTIGT 17/10/1994 | Actions: alarms were not triggered. A query however
374 GTIGT 28/10/1994 | was raised to whether other actions were carried out.
375 GTIGT 1/11/1994 Response on 26/11/94: The DAPU was changed on
376 GTIGT 2/11/1994 3/11/94
399 GTIGU 30/ 9/1994 | There were three persistent samples after which the
417 GTIGU 27/10/1994 | helicopter migrated to the majority group (3 flights).
418 GTIGU 28/10/1994
419 GTIGU 29/10/1994 | Actions: actions were not required
443 GTIGW | 28/9/1994 | (1) There were four persistent samples.
444 GTIGW | 28/9/1994 | (2) The helicopter did not fly between 30/9/94 and 6/11/94
445 GTIGW | 29/9/1994 | Maintenance actions were carried out on 30/9/1994 which
446 GTIGW | 30/9/1994 | included main rotor blade replacement and main rotor
assembly maintenance.
Action: alarms were not triggered.

40



Study |

As a consequence of the clustering analysis, an alarm was triggered regarding G-
BLXR and a query was raised regarding G-TIGT (sce the above table). The analysis
suggested that G-BLXR had a main rotor non-adjustable fault, which was highly
likely to be a frequency adapter fault. The analysis also reported a signature which
had not been reported before. The signature indicated that the effect of the fault is
cquivalent to a difference in the flap-wise stiffness between the blue and red blade,
which are opposite to each other, of about 200 DAN (DAN is the unit used by the
aircraft manufacturer, ECF). The observations of the line engineer regarding the two
helicopters substantiated, to some extent, the clustering analysis. G-BLXR was under
heavy maintenance and the Data Acquisition and Processing Unit (DAPU) of G-TIGT
was replaced.

The line engincer also indicated his concern regarding G-TIGO. The clustering
analysis did not identify this as an atypical helicopter. In the period from 1/9/94 to
6/11/94, 36 maintenance actions were carried out on this helicopter, perhaps, to
rectify the cause of the concern. These actions included the replacement of
frequency adapters on 16/9/94 and 29/10/1994 along with main rotor head assembly
maintenance. Nevertheless, the last valid flight record for this helicopter was on
24/9/1994; absence of a flight condition of interest (e.g., cruise or climb) invalidates
the flight record. It seems that the search for the cause of the problem is still going
on, but the lack of valid flight records after the 24/9/1994 prohibited MJAD from
participating in this scarch.

It is worth mentioning that some of the maintenance actions could have been miss-
targeted actions or routine maintenance. In other words, the maintenance actions
can fail to rectify the symptoms that triggered the alarms or are carried out as
scheduled maintenance. Therefore, 100% concentration of a maintenance action in a
cluster is not expected. To this end, it is reccommended that line engineers indicate
the reason for the maintenance action. In the case of more than one maintenance
action, it will be useful to indicate which maintenance action is considered to be
targeted.

It is also recommended that features other than the vibration harmonics which have
been extracted from signal averages be considered. This recommendation is based
on an initial assessment involving another data set of 233 downloads of raw
vibration mecasurements from 20 helicopters in cruise. Whilst the practical
significance of analysing this small data set is low, the signatures which were seen in
this data set are expected to enhance the visibility of the main rotor faults.

The above results demonstrate the performance of the IDM system by identifying its
ability to recognise previously reported and unreported features in HUMS data,
which may be used in order to diagnose mechanical defects. Nevertheless, it is
important to emphasise that the above process is developed only for demonstration
purposes. The realisation of a practical system for the main rotor non-adjustable
faults requires a dedicated programme. In this programme, it is reccommended that a
large data set be used and to concentrate on the refinement issues, which include
mathematical modelling, features® selection and the interpretation of various cluster
algorithms.

Conclusions

Central to the intelligent management of a large data set are data pre-processing,
unsupervised learning and  supervised learning. A HUMS Intelligent Data
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Management system (IDM) is therefore a framework that organises effective
interactions between these three intelligent processes and, at each interactive stage,
reports intermediate results.

Pre-processing is the mechanism that allows the use of generic tools to extract
features from HUMS measurements so that the problem of interest is adequately
portrayed. The implementation of the underlying laws of physics is an application
dependent pre-processing task which can be carried out during an initial refinement
stage. During the life time of the IDM system, pre-processing may be revisited at
reasonable time intervals (one or two year period) and hence, the system must be
flexible enough to be efficiently upgraded and re-certified. The upgrading process
can be guided by practical observations, data-related knowledge and mathematical
simulations.

Data-related knowledge is extracted from features by statistical pre-processors and a
number of unsupervised algorithms. Each algorithm is targeted at a specific cluster
type or a specific aspect of the problem. Unsupervised learning is the mechanism
that can report pattern abnormalitics even when the underlying cause is unknown. If
samples persistently fall in atypical data clusters, inspection is triggered in order to
identify the cause. Initially, the inspection is not expected to identify component
faults. However, the inspection results can be used as a means to refine the data pre-
processing methods in order to enhance the fault visibility and reduce the number of
falsc alarms.

As a consequence of the interaction between the operator and the IDM system, a
recasonable number of cause-cffect examples can be gencrated. Each example
consists of a detected fault along with the symptoms of the fault. By using these
examples, a supervised learning process can be trained to identify faults given
symptoms. The learning ability of the supervised learning process is dependent on
the range covered by the examples and, the features that describe the symptoms.
Again pre-processing may be revisited to re-establish the features that can offer
sufficient fault discrimination.

Whilst the IDM framework must facilitate interactions between pre-processing,
unsupervised learning and supervised learning, it is required to provide an initial
refinement mechanism and a long term upgrading mechanism which aid the
improvement of mathematical models, and seck for a representative set of features
and/or enhanced core algorithms (supervised or unsupervised). Section 2 has
concentrated on refinements using mathematical models. In this section, the impact
of the clustering algorithms and feature’s selection has been investigated. A refined
process has been used to demonstrate the performance of the IDM system by
identifying its ability to recognise previously reported and unreported features in
HUMS data. The process has reported stiffness disparities which can be associated
with main rotor non-adjustable faults; the main target has been frequency adapter
faults. The process has also triggered an alarm concerning a helicopter and raised a
query regarding another. The feedback observations from the line engineer have

substantiated the analysis results. The first helicopter is currently undergoing heavy

maintenance and the DAPU of the second helicopter was replaced.

In order to realise the full potential of the IDM system it is recommended that more
than one cluster algorithm be included and, consider features other than the
vibration harmonics which have been extracted from signal averages. Revising the
measured sensitivities of the main rotor adjustable faults can have a favourable
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impact on the IDM analysis. It is also recommended to state in the HUMS database
the reasons that triggered a maintenance action and, in the case of more than one
action, indicate which maintenance action is considered to be targeted.

CONCLUSIONS

There is much still to be gained from the patterns concealed in helicopter HUMS
measurements. This report has demonstrated the feasibility and performance of a
computer based Intelligent Data Management (IDM) process. The IDM process
detected, by using unsupervised learning methods, abnormal patterns in the large
volume of HUMS data even when the underlying cause was unknown. The process
also assimilated the relationships between mechanical faults and abnormalities by
using supervised learning methods. Not only mechanical faults induce abnormal data
patterns but also other factors such as atypical operational conditions and equipment
noise. These factors can trigger false alarms. The IDM process was able to
discriminate between the vibration signatures induced by such factors and those
induced by faults. In this way, the report has re-emphasised that central to the
intelligent management of a large data set are data pre-processing, unsupervised
learning and supervised learning. A HUMS IDM system should organise effective
interactions between these three intelligent processes and, at cach interactive stage,
report intermediate results.

Associated with the success of detecting mechanical faults is the selection of
appropriate measurements and how they are conditioned. Pre-processing is the
mechanism that extracts features from HUMS measurements and conditions the
features so that high visibility of abnormal patterns is achiceved. Successful pre-
processing should employ model-based processes that use the underlying laws of
physics as portrayed by mathematical models. The demonstration presented in this
report deduced non-linear functions of Flight Data Recorder (FDR) parameters and
used them to mitigate operational influences on measured airframe  vibration.
Mathematical representation of the effects of metal wear on the composition of oil
samples also led to pre-processing mechanisms that reduced noise effects across
features and between oil samples. In general, it is unlikely that the initial data pre-
processing functions would be optimum. In this work therefore, quantifiable checks
were proposed in the form of quality curves that could indicate the effectiveness of
the chosen pre-processing mechanisms. During the life time of an IDM system, pre-
processing should be revisited and, if required, refined at reasonable time intervals
(one or two year period). The IDM system should be therefore flexible enough to be
cfficiently upgraded and re-certificated. The upgrading process should be guided by
practical observations, data-related knowledge and mathematical simulations.

Unsupervised learning scarches for data clusters where features extracted from
measurement samples within each cluster are similar to cach other. Unsupervised
learning is the mechanism that can report pattern abnormalitics even when the
underlying cause is unknown. This report has demonstrated that atypical clusters
having a small number of measurement samples are diagnostically significant in that
such measurements can be related to the development of mechanical faults. This
work also suggested that if samples persistently fell into atypical clusters, inspection
should be triggered in order to identify the cause. Initially, the inspection would not
necessarily identify component faults. However, the inspection results should be
used as a means to refine the data pre-processing methods in order to enhance the
fault visibility and reduce the number of false alarms.



As a consequence of the interaction between the operator and an IDM system, a
reasonable number of detected faults (causes) and associated measurements (effects)
will be gencrated. By using these cause-effect examples, a supervised learning
process can be trained to identify faults given symptoms. The supervised learning
process draws more precise boundaries around each mechanical fault and can offer
robust diagnosis. The process captures cause-cffect relationships, even when the
precise relationships cannot be explicitly expressed. The process has been
demonstrated in this report by training systems to discriminate between three
reported mechanical states comprising two faults and a health state. Testing the
systems indicated robust diagnostic that produced very high fault detection rates and
very low false alarm rates.

This report demonstrated the importance of system refinements, which should be
bascd on realistic mathematical models, representative extracted features, enhanced
cluster algorithms and engineering knowledge from in-service experience and HUMS
data. Therefore, the IDM framework should facilitate interactions between pre-
processing, unsupervised learning and supervised learning, and should include
refinement and upgrading mechanisms.

It is important to appreciate that the IDM process of this report has been developed
for demonstration purposes. A practical IDM system for main rotor non-adjustable
faults should be based on the framework described in this report. The system should
not only possess the benefits of the IDM processes, but the software should also be
capable of accommodating the refinements without the need for re-designing or re-
certifying the system. In order to maximise the benefits of the system, a dedicated
programme should consider using a large data set and concentrate on the refinement
issucs through mathematical modelling, features selection and alternative supervised
and unsupervised algorithms.
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Appendix A: A math Model For SOAP Analysis

In this appendix, a math model is developed to highlight limitations of current analysis
methods and establish reliable diagnostic techniques that can exploit the full potential of oil
debris monitoring.

A.l Elements’ Concentration Levels

As mentioned previously, SOAP quantifies elements present in oil by spectrum analysis.
Elements’ concentration levels are measured in parts per million (ppm). One part per
million is equivalent to one gram in a million millilitres (one milligram/litre). The features
which are often used by the current monitoring systems are the measured concentration
levels C; (i = 1, N_, where N, is the number of elements present in oil samples). The
diagnostic effectiveness of these raw features can be evaluated by analysing the following
equation:

Ci(t)= Cci(t) + Cni(t)—z;{ci(tj-é') O(I-Ij)} Vad)j/VT)j (A.1)
¥
where:  t is the effective time at which the concentration level is measured. The

word effective is used to emphasis that this time is equivalent to the
actual wear time.

C,(v) is the concentration level of the i element measured at the time t.

Ca(® is the continuous, deterministic function which can represent Ci(t)
fully if and only if there is no oil leakage, oil addition, contamination,
cquipment noise or measurement errors. Component wear results in
clements deposited continuously in oil from a number of alloys and,
hence, the concentration C,(t) has in general an upward trend with
time.

C (%) is the non-deterministic error (stochastic noise) of C,(t) which can be
induced by factors such as contamination, equipment noise and
meadsurement errors.

0(t- t) is the Heaviside distribution;

Ot-t)=0ift<t

Ot-t)=1ift2y

t-€ is the time just before oil addition.
Vaa; is the oil volume added at the time t.
Vo is the oil total volume at the time t.

It is clear that the actual wear time relates to instantancous rotational speeds of components
as well as component loads, and does not necessarily match the flight hours. For example, a
component running at load levels which are higher than those of similar components, is
expected to wear faster than the other components. The evaluation of the time ‘t requires
extensive knowledge about operational conditions and is therefore, very difficult. Perhaps,
SOAP analysis will be a more practical tool only if the wear time is assumed to be related
directly to the flying (operational) hours. The assumption implies the introduction of an
additional ecrror (noise). This noisc as well as the noise associated with equipment or
concentration measurement crrors is often characterised by a symmetric probability
distribution; the error term fluctuates with time above and below a zero mean value such
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that the positive and negative amplitudes are equally likely. Also, small amplitude values are
more likely to take place, and the probability distribution is often independent of flying
hours or sampling times. The average value of the error term associated with contamination
depends on factors such as environment, age of components and maintenance procedures.
For example, the silicon concentration level can be above the expected average for a
vehicle operating in the desert. An additional noise of a Gaussian type may be caused by
possible errors in evaluating volumes of added oil or concentration levels just before oil
addition. In order to simplify the analysis, the error term C,(t) will be considered to
represent the combined effect of all noise sources described above.

A feature (c.g., a concentration level) will be regarded as an acceptable feature (input) for
diagnostic systems if the following two conditions are satisfied:

*  The feature can describe component wear modes.
*  The noise associated with the feature is relatively insignificant.

It is cvident that measured concentration levels do not necessarily satisfy these two
conditions. The error term C(t) is not small and the concentration levels associated with
normal wear modes can be higher than those associated with failure modes. This is
attributed to the fact that the measured values of C(t) depend on oil addition, oil leakage
and accumulation time as well as the wear mode. Customarily, available SOAP databases, do
not contain information that allows the evaluation of the third term of Equation (A.1)
accurately. It is therefore concluded that systems based on raw concentration levels can not
provide robust diagnosis and will be characterised by a high degree of false alarms and/or
low detection rates.

Pre-processing of measured concentration levels is essential to realise a robust diagnostic
system. The major purpose of pre-processing is the reduction of noise and the production of
features that relate closely to wear modes.

A.2 Elements’ Instantaneous Weights

Consider the weight of the ith element W, present in oil at the time t:

Wpi(t) = Ci(1) V(1)

Ve(t) = Voo(t) + Ven(t) + 2{ Vad)j(t'e) O(t-tj )} (A.2)
J
where: V(0 is the existing volume of oil at the time t.
V..(0) is the continuous, deterministic function which can represent V.(t)

fully if and only if there is no oil addition or volume measurement
errors. For example, if the oil is consumed (or leaking) at constant

rate, then V.. = - m,. t + k,. where m,, is the constant rate and k,_ is a
constant.
Ve (O is the non-deterministic error (stochastic noise) of V.(t) which can be

induced by volume evaluation errors.
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By combining the noise terms, Equations (A.1) and (A.2) give:
Wp,'(t)= Cci'z_ {Ci)j O,j Vad)j/VT)j} Vec +2{ Vad)j B,j} +ani(t) (A.3)
J J

W, is the combined noise terms. The weight W, present in oil at the time t is not an
acceptable feature for diagnosis since the error term W, is not small and W, does not
represent the total weight Wy, (t) shed from the oil wetted components.

pi

A3 Elements’ Total Weights

The total weight Wy (t) of the i element at the time t is:

Wri(t) = [w; dt = Wp(1) + Wg;(t) (A4)
Wii(t) = [Ci (1) (dV/dt) dt (A.5)
where: w, is the rate at which the i element is shed from the oil wetted

1
components. Generally, this rate is a function of time; it may change
with age. However, from practical point of view, it can be assumed to
be a function of the wear mode only.

W, () is the instantancous weight of the i element which is shed and lost
with oil leakage.
V,(t) is the instantancous volume of the leaked oil.

The volume of the leaked oil can be expressed as follows:

V() = Vge(t) + Vgp(t) = VA - Veel(t) - Venl(t) (A.0)
where:” = X3 is the total initial volume, V, = V; at t=0.
V,.(t) is the continuous, deterministic function which can represent V(t)
fully if and only if there is no volume measurement errors; V. = V, —
s
V,.(© is the error of V (t); V,, = - V...

Naturally occurring noise is usually characterised by bell shaped symmetric probability
distributions which are known as the Normal distributions. Differentiation, subtraction and
addition of signals can magnify the noise. Integration however reduces the random noise
considerably. By combining the noise terms of Equations (A.3) to (A.5), the total weight
W (t) of the ith element becomes:

Wy ®=(CEAC.y, 8y Varr, [Vir Ve + £{V.r; 0, } -
J X
J‘{C"" > Z {Ci)_/ e{/ Va(/ )'//V'I')./‘}][dvec ) J /dt] dt g WTm‘ (t)
J
The standard deviation of the combined noise term Wy, (1) is expected to be high.
Study | 55



The values of Wy, (t) relate to the total wear of components and, if they exceed acceptable
thresholds, can indicate that the serviceable lives of components are expired. However, an
accurate evaluation of total weight values is not a straight forward task and further analysis
is essential to attenuate the expected high level of noise. It is worth mentioning that in-
service simplified formulae for total wear evaluation have been used and indicated partial
SUCCess.

A.4  Fundamental Pre-processing Equations

A fundamental pre-processing equation is simply an equation that contains measured
concentration levels and a parameter (or parameters) that indicates the wear mode of
interest. The wear rates w; are effected by the wear modes. Therefore, a fundamental pre-
processing equation can be derived from Equation (A.7) by differentiation:

Wiz[Cu'i-Z {Ci)j e/j Vad)j/VT)j}], & S0 2 {Vad)j 91_/ 1+ W

J J (A.8)
- [Cci T 2 {Ci)j e/j Vud )j/Vr)jH [Z {Vud )jslj}]

J s
where: 8, is the Dirac Delta at the time t; =8(t-tj).

W, is the noise contribution.

The first term of Equation (A.8) can be differentiated if the concentration levels are
expressed in a rigorous form:

Ci(1) = Cci(t)+ Cpi (1)-Z{ICi (1 - €)8(t —1)Vaq [VT dt} (A.9)
J

In this case, it can be shown that the wear rate between oil addition is:

W;=C.;’ [Vec+ X { Vad)j 6 } Wi s tis not equal to (A.10)
J

where: " "Wy is the noise term.

For an ordinary gearbox, the normal wear results in elements deposited continuously in oil
from a number of alloys at low rates. The ratios between the clements of cach alloy are
constant and hence, the ratios between the wear rates are expected to be constant. As a
gearbox defect grows, another number of components start to deposit elements in the oil
and hence, the wear rates as well as the ratio between the wear rates are expected to
change significantly.

Equation (A.8) can be further simplified by assuming that the wear rates during a particular
wear mode are constants and that the oil leaks at a constant rate; V.. = Vy — m,. t. If this is
the case, the concentration will increase with time in an exponential manner between oil
addition:
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Ci = Ciyinitial = [wi/mye] In[ 1=mye t/(VT +Z {V4q)61j}) ] (A.11)
J

At t=0, the concentration level is equal to an initial value. As the oil volume reduces, the

concentration rapidly increases with time and approaches infinity at very small volume

values. Typically, the volume of oil varies with time. In this case, Equation (A.7) rules out

the measured concentration levels as acceptable diagnostic features even if the noise is

absent. As m,. approaches zero, C, becomes:

Ci = Ciyinitial —=[Wi /(VT + X {Vaq)j61j}) ] (A.12)
J

Equation (A.12) is only applicable between successive samples where t is relatively small

and the amount of consumed (or lost) oil can be neglected (otherwise, the inclusion of V,,

in the above equation is physically meaningless).
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Appendix B: Helicopter Math Model

The main objective of the mathematical model presented in this appendix is to establish
effective vibration data pre-processing methods. The nbR airframe vibration originates from
blade aerodynamics and inertia loads modified by structural dynamics of blades and
fusclage (n is an integer, R refers to a frequency of one main rotor revolution per second
and b is the number of blades). The blade loads at the radial position r are as follows:

R
Mp(r)= J{(Fk —may) (p=r)+(ma -F,-)(z,,-z,)}dp ®1)
r
R
My(r)=| (Fj 5 j)p(P-r)+(mai —ﬁ)(yp —yr) dp (B.2)
r
R
M,(r) = j(Mair_ ,'1) dp (B.3)
T
R
Sf(r) = I{(Fk —-mak)p}dp (B.4)
r
R
Salr) =] (Fj—maj) dp (B.5)
r P
aj =ap; *ap;, aj=ap;tap;, ap =apy tap +g (B.o)
a, Acceleration of a blade particle, m/s’.
a, Hub acceleration, m/s”.
a Net acceleration of a blade particle, m/s”.
i,jand k Hub rotating axes: i and j lie in the hub plane and k points upwards.
F, Acrodynamic load per unit span along the i axis, N/m.
F; Acrodynamic load per unit span along the j axis, N/m.
F, Acrodynamic load per unit span along the k axis, N/m.
g Gravity acceleration, m/s”.
m Blade mass per unit length, k/m.
M, Pitching moment about the elastic axis, N-m.
M, Dragwise moment at r, N-m.
M; Flapwise moment at r, N-m.
M;, Inertial pitching moment, N-m.
M, Torsion moment at r, N-m.
Sa Dragwisc shear force, N.
S; Flapwise shear force, N.
p Radial co-ordinate, m.

Subscripts refer to either direction or a value of a function variable.
The blade element theory is implemented to evaluate the acrodynamic loads from

information about local angles of attack along the blade, acrodynamic coefficients and the
local velocity distribution. The angle of attack o is approximated by the following equation:
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o =6, +x6r — A cosy — By, Sinl//—Ulkl/Ulj] (B.7)
0, Collective pitch angle, radians.

0, Blade twist angle at the tip, radians.

X Radial co-ordinate/blade radius.

Al Lateral cyclic pitch angle, radians.

B,. Longitudinal cyclic pitch angle, radians.

U Normal velocity component, m/s.

U, Chordwise velocity component, m/s.

\} Blade azimuth angle, radians.

The aerodynamic coefficients are functions of the Mach number and the Reynolds number.
In Reference 3, a simple model and wind tunnel measurements have been used to deduce
an analytical expression for the lift curve slope a:

a=ay,+Vr (‘110 +a11,u2 +ajpsin l//)/as (B.8)

a,, a, and a4, are constants.

a, The speed of sound, m/s.

T = V/(QR); the advance ratio.

R The blade radius, m.

A% The helicopter forward speed, m/s.
Ve The blade tip speed = QR, m/s.

Q is the rotor rotational speed, radians.

For the purpose of this investigation, the lift curve slope will be assumed to consist of a
constant term, first harmonic terms (siny and cosy terms) as well as second harmonic terms
(sin2y and cos2y). The drag coefficient will be represented by the following expression:

Cp=Cpo + aZCDa (B.9)

a is the angle of attack.
Cpo and Cpq arc drag cocfficients.

The motion expressed in terms of local axes fixed in the blade can be related to axes fixed
in the rotating hub:

—il- ; cosfB cosm
J1|=|-cosB sinnp
(k1| | -sinf
3] -cos,B cos7
Jj|= sin7
|k | |sinB cosny
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sinn sinf8 cosn :
cosn —sinf sinn
0 cos
—cosf sinn —sin,B-
cosn 0
-sinf sinn cosf |

J
k .
(B.10)
i
A
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B is a rotation angle about the flapping axis.
n is a rotation angle about the drag axis.

Assuming the helicopter moves with velocity components U,, U, and U,, rotates about its
centre of gravity with angular velocity components p, g and r, the angular velocity A of the

hub axes i, j and k becomes:

A=wy ity j+Qk
; ‘ (B.11)
@y =gsiny — pcosy @y =qcosy + psiny

The velocity of a point ‘d’ (having x,, y and z co-ordinates, X, = X + ¢R, ¢ is the flapping
hinge offsct) relative to the hub axes i, j, and k becomes:

T {jc+(wyz —Qy)} i+{§+ (Qx, —a)xz)}j+ {é+(wxy-wyx1)} k (B.12)

The local axes i,, j;, and k, are defined by the local angles of the deflected blade B, and 7,
Therefore, the velocity of ‘d’ relative to the local axes becomes:

Vg ={ ().c+ Wyz - Qy) cospBycosny + ().:+ Qx1 — @, z)sin7y

+(},+ @y y — @y x] )sin Sy cosnp }

+{—(;c+ @Wyz— Qy) cospfysinny + (}.z+ Qxq — w,z)cosny

—(z+ @y y — @y x1)sin fy sin 7y} J
+{—(x+ a)yz—Q y) sinfy+(z+o,y- wyx])cosﬂ(} k
(B.13)
The net components of the local velocity of the air at the point ‘d’ becomes:
Uit = [Vxrcosy -V, siny - ¥ ®yz+Qy] cos s cosny
“[Vyrsiny +Vy,cosy + ).r+ Qx; - wxz] sin 1y
+[Vg - z- Wxy+®yxy] sinfycosn + vjy
Uyjr = [Vxrcosy —Vy,siny - x— wyz+Qy] cos By sin 7y
+[Vyesiny +Vy, cosy + )':+ Qx; -—w,z] cosny +
+[Vg - é— @yy+@yxy] sin By sinn; + vjp
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Uikr=-[Vyrcosy =V, siny —x—@,z+Q y] sin Sy (B.14)

+[Vzt -Z_wxy+a)y11] COSﬂ{ = ¥Vig

U,, Uyand U, are the helicopter velocity components relative to x, y and z.

p,gandr are the helicopter angular velocities about its centre of gravity.
Vi, Vi and V,,  are the net velocities that contain the effect of p, g and r.
Vi1, Viz, Vis are induced velocities at the point ‘d’.

Equation (B.14) is a general form which can be applied to steady and unsteady cases.
Regarding the Super Puma MK I HUMS FDR parameters, p and ( are not measured and the
steady forward speed is only considered and hence Equation (B.13) can be simplified by
considering wind axes x, and y, as follows:

Xn ki kal|=x x ki —ky||xp
Yn -k k|ly ¥y |k2 Kk |lva

k1 =V [V kp =Vy [Vp  Vp= \/th?’ +Vyt2 (B.15)

—Uyj) =Vp siny + y+ Qx
Uk =-Vpeosfy +Vy —z-v;3
The blade elastic deflections are used to evaluate the net acceleration of the blade particle.

These deflections are obtained through the use of modal analysis. For example, the flapwise
degrees of freedom can be estimated from the following equation:

R R
’ o ’ a
| mg;dr ,Bn+cofﬂn = [{ Fy —may +mz+(maﬁ—F,-)ﬂl gndr
0 0
aﬁ =a; +m2
g is the ith flapwise mode shape.

Throughout this investigation, the first flapwise mode shape is only considered. The
Flapping angles are related to the control angles by simplifying and solving the analytical
cquations of Reference 3. The induced velocity in the vertical k direction is evaluated from
the well known Glauert formula:

A =201+ kxcosy)

Ao is assumed to be a function of torque.
k is a function of the velocity state.
X is a radial non-dimensional co-ordinate.

Considering the above equations and along with a fixed frame of reference, the 4R vibration
can be approximated by the following equation:
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Vu=p(1-1w07°) Q° {V,”(0,+¢,6,+0 A, +¢,B, +o.u_ +
+0,A4,° +6,B,° +¢,0,A, +¢,0, B, +6,A, B,
O R A +O,,0.26 B, )+ —w)V, (Y ,+Y,0,+V A,
+VY,B, +y.u. +y, A, +y.B,° +y,A,B,)

(B.106)

+1-w)”(9,+9,0,+9,A, +9,B,.)

+H(I=w) (XA 2B +AsH:)

s vb—) (§/+§_‘90+§.7’A/C T g IBIC it gSAIC-' T gOBIC-‘ =+ g,’Alt'Blc)

+V, (M0, M4, +0, B, +M;A,° +0,B,° +M,4,.B,)}
K, = Vu/(nR) - Ao
O, VY, Vi, are functions of helicopter configuration parameters, structural propertics,
%is Nir G Mach number and Reynolds number.

The parameters of the model can be reduced through Multi-Variate Regression analysis (e.g.,
Principle Component Analysis). The tail rotor parameters and the attitude angles can be
uscd to assess the helicopter trim state. As more data becomes available, the above analysis
can be revisited in order to establish the optimum pre-processing model.
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Appendix C: The Neural Network Basic Building Block

The human nervous system contains hundreds of different types of neurons. The brain itself
has a large number of neurons and communication paths of the order of 10° neurons and
10" synapses. ANNs are made of a relatively small number of neurons and synapses. The
ANN is a mathematical tool with a potential parallel hardware implementation. The tool can
perform challenging computational tasks such as function approximation, classification,
filtering, modelling and control.

The different ANN architectures can be constructed from the basic building block shown in
Figure C.1.

The output Z Constant input (Bias)

Z =X
N+
|delay unit].-----[delay unit i B e i '——T'—@

o
XN+m+mbD SNy XN+m
w
N+m+mD gl S w
N+m z =G(Y,) External input
X
LY _=F(X.W) @
ey 4
s @
%
"W ¥
WN+L+LD ¥N+L cevo o VNG ¥N+]
X f X X
e B g o s B e R o B e P N1
i 1 |

Fig.C.1 A basic building block for ANNs

Any network consists of ‘L’ ncurons. Each neuron receives input values X, X, X, .., Xx.1.o1
through synapses. The real numbers W, W, W,, .., W (.00 (the weights) simulate the
synapses’ strengths. Each neuron combines its input values and the associated weights using
the function F to produce a real number Y. The neuron applies a non-linear function G to Y
and produces the neuron output Z. As shown in Figure C.1, the m" neuron represented by
the central circle receives four types of inputs:

e Ninputs (X, X,, ..., Xy) from N external sources.

For example, the inputs may be N numbers that represent concentration of elements in
SOAP samples or amplitudes and phases of vibration signals.
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* A constant internal input X, (X,=1) referred to as the bias.

» The feedback from the m” unit to itself.

e Assume that the output of the m™ unit is a function of time and that the current
output is a function of itself as well as D values of previous outputs. The feedback
values to the m™ unit will be:

Xnw= Zn(D),

Xneme@-npe1= Zn(t-1), ..... y

Xxsmsmp= Zy(t-D)

The delay units shown in Figure C.1 store the previous values of the output Z,,.

e Input from otber neurons.

The output Xy,; of the neuron j (j =1, 2, ..., L and j # m) is passed to the m" necuron.
Also, the D delayed outputs Xy 6.10+15 Xxsjag-1)Ds2s +oeees , X x:isip May be passed to the
m" ncuron.

The neuron inputs may not necessarily comprise all types of inputs. For example, some
neurons may receive inputs from external sources only. The networks that have feedback
loops are referred to as the dynamic or recurrent networks as opposed to the static
networks which are those without feedback.

Quite often, the function F determines the correlation between the input vector X and the
weight vector W by combining the products of the vector components in a linear manner.

Yo =XoWo + X, W, + ..... + Xnonek Wik = w'X (C.1)
F may be chosen to be a function of the difference between X and W.
Ym = F{(Xo-Wo),(X;-W)), ... Kyurek- Wiiri) } = FX-W} (C.2)

For example Y, can determine the Euclidian similarity measure between X and W as
follows:

Y, = d,’=(Xo-Wo) 2+( X,-W) 1+ ... Kotk - Waarex ) ° (C.3)

Thus, a small value of the distance d,, indicates that the input vector X is close and similar to
the weight vector W.

Generally, the weights are evaluated during training sessions. The weights can be regarded
as the knowledge that has been acquired and distributed over the network synapses.

Usually, the non-linear function G referred to as the activation function takes one of the
following forms:

= forY_>00 (C.4)
=0 for Y., 0.0
-cY

m

Z, =1/(1+e)(C.5)
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Zm = tanh ( Ym ) (CO)
i Ym / (201)

Z, =¢ (C.7)

Za =Y, (C.8)

Equations (C.4) and (C.5) are referred to as the hard limiting non-linearity (or signum
function) and the sigmoid function respectively. The sigmoid function is an S-shaped
continuous, differentiable function that varies monotonically from 0 to 1 as its input Y,,
varics from — oo to + eo. The constant ¢ determines the steepness of the transition region and
is often chosen to be equal to unity. The tanh function is an S-shaped continuous,
differentiable function that varies monotonically from -1 to 1 as its input Y,, varies from — eo
tO + oo

Equation (C.7) represents a Gausian differentiable function; if equation (C.3) is used to
cvaluate Y, and the weights are regarded as a representative pattern, the closer an input X
is to the representative pattern W, the larger the response of the function will be. The
Gausian function belongs to a class of functions called radial basis functions. In this case,
the weight W and ¢ are referred to as the centre and the width of the function.

A number of ANNs use equation (C.8) for output neurons. A special case of neuron type is
the input neuron which passes the input unchanged (X, = Y,, = Z,,). Another special case is
the high order neuron that combines its input in a non-linear manner, for example:

Y, =X =X X, (C.9)

Lo =Y (C.10)

In this case, the neuron produces a new input by using a priori knowledge. This input is
passed to non-linear neurons along with the rest of the inputs to yield significant results.

ANNs are made of layers of neurons. Often, the ncurons of each layer can perform
computational tasks independent of each other (i.e. in parallel to cach other).
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Summary

This report details the results of using advanced Artificial Intelligence (AI) fault detection
techniques to analyse two sets of seeded fault data from the Civil Aviation Authority (CAA) /
GKN-Westland Helicopters (GKN-WHL) S61 Main Rotor GearBox (MRGB) seeded defect
test programme. Vibration and Spectrometric Oil Analysis (SOA) data were analysed for
both sceded defects, to cnable consideration of data fusion aspects of HUMS data
management.

The analysis primarily makes use of supervised and unsupervised Al analysis techniques.
These were initially configured for ‘blind’ analysis of the first fault, optimised in the light of
feedback, and then essentially ‘frozen’ for the analysis of the second seeded defect. In this
way, the ability of these techniques to identify the existence and location of the new seeded
defect without any prior knowledge, and despite having been optimised for the first defect,
is demonstrated.

Data integrity checks, data modelling and trend detection methods were developed and
refined during the analysis of the seeded defects, and resultant improvements in detection
cfficiency demonstrated.

The results from the analysis of the second fault build on the success achieved in the
detection of the first fault, and show good potential for implementation as part of in-service
helicopter Health and Usage Monitoring Systems (HUMS). The report makes
recommendations to achieve this successful implementation.
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Glossary

Al Artificial Intelligence

CAA Civil Aviation Authority

FDR Flight Data Recorder

GI Gear Indices

GKN-WHL GKN - Westland Helicopters Limited

HUMS Health and Usage Monitoring System

IDM Intelligent Data Management

IFE Iterative Feature Extraction

MJAD MJA Dynamics Limited

MRGB Main Rotor Gearbox

PLATO Pattern Learning Algorithm Toolkit

s.d. standard deviation

SGDS Smart Gear Diagnostic System

SOA Spectrometric Oil Analysis

SOL Structured Query Language

VIS The SGDS Visibility GI (see Appendix A for details of other GI parameters)

1R The amplitude of the vibration component at a gearshaft’s rotational frequency

2R The amplitude of the vibration component at twice the gearshaft’s rotational
frequency.
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INTRODUCTION

Background

Helicopter Health and Usage Monitoring Systems (HUMS) produce huge quantities
of data. The current generation of in-service diagnostics are generally efficient at
recognising faults for which the HUMS has already been manually configured.
However current systems are limited in their ability to detect previously unseen
faults and lack the ability to automatically learn the characteristics of faults once they
have occurred.

In addition, HUMS operators have to make decisions based upon interpretation of
more than one type of data. For example, to diagnose a gearbox fault, consideration
of both vibration and oil debris data may be appropriate. The problem of ‘fusing’ this
data to reach a decision is made more difficult by differing rates of sampling, and
fault-related patterns within the data.

MJA Dynamics have developed a range of Artificial Intelligence (AI) techniques
aimed at removing the current HUMS limitations. This report details the application
of these Al techniques to data from two sceded fault tests on an S61 Main Rotor
GearBox (MRGB) to demonstrate their potential use in future HUMS.

MJA Dynamics’ Al techniques employ two strategies for fault detection, namely
supervised and unsupervised machine learning.

Unsupervised machine learning is a process which automatically identifies atypical
behaviour, without any prior knowledge of the reason for this behaviour.

Supervised machine learning can establish relationships between causes (mechanical
faults) and effects (measurements). Once a fault has been identified the data which
arc characteristic of that particular fault are used to define a fault arca. The fault area
can then be used to classify new data to establish if that particular fault exists.

Both of these learning strategies are incorporated into MJA Dynamics’ Pattern
Learning Algorithm Toolkit (PLATO), which was used to produce the majority of
results contained in this report.

The S61 MRGB Test Rig

The sceded fault tests used WHL's closed loop back-to-back test rig. In this
configuration the test S61 gearbox is connected to an identical slave gearbox. The
output of the slave gearbox is then routed back to the input of the test box. By
introducing a known quantity of wind up in this closed loop arrangement it is only
necessary to supply enough power to overcome frictional losses, whilst operating
the test gearbox under full load conditions.



15

Study 11

The S61 MRGB contains two input pinions, a number of speed reducing/combiner
gears and a single epicyclic stage. The signals produced by 11 accelerometers placed
at various locations around the gearbox were recorded on magnetic tape. This data
was analysed by WHL using MJA Dynamics’ SMART gear diagnostic system (SGDS).
This performs synchronous signal averaging of vibration data and computes a range
of gear indices, each related to a specific aspect of the signal average. Groups of
accelerometers were used to monitor individual gears. Table 1 shows which
accelerometers were used to monitor which gears.

MJA Gear Reference Monitoring
Accelerometers

1 C,D,K

2 E.G H )

3 ABC, I K

4 ABC, ILK

5 AC I K

6 B,C LK

r 4 B,C,I

8 AC,I

9 B, C,I

10 AC, I

;5 G. H. |

12 D.EFJ

13 EF

14 B E.F.J

Table 1 Accelerometer groups for all gears

A defect was deliberately seeded in the gearbox before each test began. Its nature
and position were not revealed to MJAD. The growth of this defect was monitored by
WHL over the complete duration of each test.

Data Supply and Analysis Protocol

The data was supplied as a number of discrete samples, where each sample
contained gear indices (GI) derived from the vibration signal using MJA Dynamics’
Smart Gearbox Diagnostic System (SGDS), and clemental concentrations derived
from Spectrometric Oil Analysis (SOA).

The GI and SOA data were supplied to MJAD for analysis. The time interval between
the acquisition of cach set was not revealed. MJAD were advised that the first batch
of samples for each fault could be considered as healthy since the defect had not
become significant during the first stages of the test. WHL believed the remaining
samples contained detectable fault characteristics.

AV
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The test data were supplied in the following order:

1 Vibration and SOA data for the pre-initiation phase. This was used to
characterise the gearbox’s normal behaviour using unsupervised learning
techniques.

2 Vibration and SOA data for the remainder of the test (the ‘post-initiation’
samples). This was analysed ‘blind’ using the analysis configuration resulting
from the unsupervised analysis of the normal data.

3  Details of the fault and its development. This was used to permit ‘supervised’
analysis of the data, and to refine the pre-processing once the ‘blind’ analysis
had been performed.

4  Additional ‘unscen’ vibration and SOA samples to permit further blind testing of
the refined processing.

Aim

The aim of the work reported is to demonstrate the ability of Al based analyses to
detect S61 MRGB gear faults from vibration and SOA data.

OVERVIEW OF THE Al TECHNIQUES EMPLOYED
Unsupervised Machine Learning

Unsupervised learning involves the identification of distinct patterns in the data
without labelling information. A meaningful characteristic can often be attributed to
a pattern after it has been discovered by unsupervised learning. For example, if the
members of a pattern are found to be exclusively fault related, it is likely that the
pattern itself is fault related. Patterns based on high occurrence rate and similarity of
parameter values are called clusters.

In order to detect clusters in the data, a multi-axis graph is effectively generated with
sclected SGDS Gear Indices (GI) and/or SOA data forming cach of the axes.

The first step in the analysis is to plot the pre-initiation samples onto the graph. The
arca of the graph can be termed ‘vector space’. PLATO analyses the distribution of
the samples on the graph looking for denscly populated areas (referred to as
‘clusters’ or ‘groups’ in this report). Often clusters will be developed that comprise
one particular gear type because of its unique behavioural characteristics.  There
may also be clusters containing a single point due to statistical spread, but the
clusters which are of interest are those which contain a large number of samples
from a particular gear. These clusters can be said to define the ‘normal’ or healthy
behaviour of that gear. Sometimes clusters contain more than one gear type. The
centre point of each cluster is calculated together with Standard Deviation (s.d.)
along each axis.
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The second step is to effectively plot the post-initiation samples onto the same graph
on which the pre-initiation clusters have been defined. The distance from each data
point to the centre of each pre-initiation cluster is calculated and an assessment
made of the likelihood of it being part of the cluster based on the cluster’s statistics.
This process is termed ‘Group Assignment’.

Fault Recognition Criteria

The final step of the analysis is the interpretation of the distance values. If a gear
develops a fault then this will affect one or more of the GI values. As the GI values
change, the samples plotted on the graph will progressively move away from the
pre-defined clusters. Typically one cluster is selected to represent ‘normal’ behaviour
and movement considered relative to this.

Progressive faults initially manifest themselves as small changes in the parameter
values of a healthy sample. As a fault develops, the difference between its parameter
values and those of a typical healthy case will gradually increase. This will be seen in
vector space as a progressive movement of the fault sample away from the healthy
cluster(s).

In cases where there is considerable variability between data from different gears,
sclecting a single cluster to represent the behaviour of all gears in healthy state, may
result in reduced sensitivity to faults. In general, where there is considerable
variability in the data, the alternative approach of defining healthy clusters for
individual gears (or groups of gears exhibiting similar behaviour) will provide
increased sensitivity. The process of recognising clusters in the healthy data which
were predominantly composed of data from individual gears could be automated.
This process would be facilitated using larger quantities of data than were available
for the current investigations. The individual data points would then need to be
group assigned to the relevant healthy cluster(s).

There are a range of different possible group assignment strategies. Each strategy
returns a sct of values which correspond to the likelihood of a sample belonging to
cach of the clusters. The likelihood of a sample belonging to a cluster depends on
two things:

*  The Euclidean distance between the sample and the cluster centre.

. The standard deviation of the cluster (i.e. its spread).

Each strategy aims to combine these factors to give the most reliable estimation.
Issues of noise and outlying data mean that the best strategy to use will depend on
the nature of the data.

Strategy for Analysis of the S61 MRGB Seeded Fault Data

The pre-initiation data for the first seeded fault was analysed to establish the normal
cluster(s). A range of different group assignment strategics was then investigated for

categorisation of the post-initiation data. From feedback on the unsupervised blind
analysis’ success in finding the fault, an optimum analysis strategy was determined.
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Once the optimum strategy was determined for the first fault. The same analysis
strategy was applied to the second fault in order to assess its general applicability.
This assessment relates to both the performance of the strategy, and the degree to
which the normal cluster(s) apply between builds of the same gearbox.

Supervised Machine Learning

Supervised learning techniques work by detecting features which distinguish one
data set from another. In the case of fault detection, the goal is to distinguish a data
set relating to a gear fault condition from the healthy data set. For this trial, all post-
initiation samples were considered to be faulty while the pre-initiation samples were
all considered to be healthy.

Various techniques exist for detecting features which distinguish one data set from
another. Most rely on the principle of ‘plotting’ samples in multi-dimensional vector
space. Each dimension corresponds to one of the parameters which is associated
with a data sample (i.e. GI values, or SOA clement concentrations).

All data samples are plotted in vector space and labelled as either healthy or faulty.
The goal of the learning algorithm is to identify arcas of the vector space which
exclusively and repeatedly contain all the samples from one data set. Subsequent
data falling into this arca are likely to belong to the same data set. If an arca of vector
space can be found which exclusively and repeatedly contains faulty data, new
samples falling into it are likely to be faulty.

Iterative Feature Extraction (IFE) Technique

Techniques vary in the way vector areas are identified and bounded. Iterative feature
extraction (IFE) identifies fault arcas iteratively and encloses them with linear
boundaries.

Identification is achieved by iterative outlier exclusion. At the first iteration, linear
boundaries are chosen for each dimension such that all fault points are just enclosed
within an area of vector space. Two boundary values are chosen for each dimension,
cffectively an upper and lower limit. Considering one dimension (or parameter) of
all the fault samples, the minimum value is used as the lower limit while the
maximum value is used as the upper limit. This process is repeated for each
dimension in turn until all have an upper and lower limit set which just encloses the
fault data.

At this stage it is possible that some healthy data may have been included in the
scelected area which, ideally, should not contain any. This is likely if a fault data
sample has an unusually high or low value compared with the rest of the fault data.
By moving onc of the linear boundaries inwards it is possible to climinate one or
more of the mis-classified healthy samples and any outlying faults. In a similar
fashion to a computer chess program, the algorithm tries all the possible boundary
moves, and then chooses the best one. The best move is defined as the one which
minimises the number of healthy cases contained in the arca while maximising the
number of faulty cases remaining.
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After each move is made, the number of healthy samples still remaining in the
reduced area is counted. If this is greater than zero, that is to say there are still
healthy cases which have been mis-classified as faulty cases, the algorithm chooses
and makes another boundary move. This makes the area enclosing the fault cases
progressively smaller and smaller until no healthy cases are mis-classified. At this
point the algorithm stops adjusting the boundaries and reports the number of fault
cases still remaining in the derived fault area.

If this number is high compared with the total number of fault samples in the whole
data set, then the fault-related data set is highly separable and the boundaries
identified should be capable of correctly classifying new samples presented to the
system. If however this number is low, then the chosen parameters are not capable
of discriminating hecalthy and fault-related data and are therefore poor fault
indicators.

Before the first iteration the space which just encloses the fault data always gives
100% fault detection. All fault cases in the training data are contained within this
enclosure and will therefore always be classified as fault related. At this stage
however, there are likely to be healthy samples which are also contained within the
enclosure. These have been mis-classified and will constitute false alarms.

For example, consider a data set which has 12 samples, 7 of which are faulty. Before
the first iteration all of the faulty samples are guaranteed to be in the fault enclosure.
Unfortunately 2 healthy samples have also been caught in the enclosure. This means
that all 7 fault samples will be spotted but there will also be 2 false alarms.

After the last iteration the fault area will not contain any healthy samples. This means
there will be no false alarms whatsoever. The level of fault detection will, however,
have fallen. At this stage there will be faults which lie outside the enclosure. These
will be classified as healthy although they are in fact faulty.

Continuing the example, after the last iteration there might be 4 samples left in the
enclosure all of which are guaranteed to be faulty. This means that no false alarms
will be generated. Unfortunately, the 3 faults which had to be removed in order to
climinate the false alarms will now be classified as healthy.

As the algorithm iterates, the rate of false alarms gradually drops as the rate of
missed faults increases. Since the algorithm records all of its moves, a compromise
can be chosen. The level at which the compromise is set is determined by the
operator, and depends only on the relative cost of false alarms verses the cost of
missed faults.

In comparison to other approaches such as ncural networks, the IFE technique is
ideally suited to cases where comparatively small amounts of training data are
available. The IFE training times are also considerably faster, and it provides a clear
identification of how it has learnt to recognise the fault-related patterns.
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UNSUPERVISED BLIND ANALYSIS OF FAULT 1 DATA
Analysis of Pre-Initiation Vibration Samples

The first step in the unsupervised blind analysis was to analyse the pre-initiation data
from the first seeded defect to identify the normal clusters.

Data Integrity Checking of Vibration Data

The initial pre-initiation samples were considered to be representative of a healthy
gearbox. None of the clusters discovered in this data would therefore be expected to
be fault related. The VIS parameter was not calculated for certain gears due to the
fact that phase cffects often cause cancellation of mesh frequency components for
these components. It was therefore necessary to analyse these gears separately to
those for which VIS was calculated.

Initial analysis of all the pre-initiation data (i.e. data from both ‘VIS® and ‘non-VIS’
gears) for the first seeded fault, produced unexpected results which contained
several outlying data points. Inspection of the vibration parameters for these samples
suggested that an erroncous acquisition had occurred. Another cluster analysis was
performed on a subset of the data for those gears for which VIS was calculated, with
these outiers removed. This produced the results which can be seen in the
composition table, Table 2. For cach gear-sensor combination (e.g. where ‘GEA4_A’
indicates gear 4 monitored from sensor location A), this shows how many of the 5
normal data samples for cach gear-sensor combination fell into each of the groups.
The composition table shows 13 distinct groups in the data. An ideal result would
show each gear consistently appearing in the same group. This would indicate that
the parameters had a consistent pattern which PLATO was able to identfy as
‘normal’. At this stage however, there were no distinct groupings for some gears,
particularly gears 10 & 11.

Closer inspection of the signal averages for gears 10 and 11 revealed that the
tachometer signal had been acquired incorrectly for these gears. This explained the
unexpected results for these gears shown by the unsupervised gear analysis. Aware
that greater confidence would be achieved using the complete data set without
having to seclectively remove outlying datapoints, a request was made for re-
acquisition of sclected data using a modified acquisition set-up. The remaining
outlying points were climinated by customising the SGDS analysis configuration for
the S61 MRGB, only 6 out of the total 52 gear sensor combinations required changes.
Such modification of the analysis configuration to suit a particular gearbox
application is fairly common once an initial dataset has been analysed. It does not
represent customisation to suit the particular seeded fault.

Following customisation of the SGDS configuration and appropriatec data
reacquisition, the pre-initiation data for the first seeded defect (i.e. samples 1 to 5)
was split into three categories and analysed appropriately. The three data categories
were as follows :

*  Vibration data from gears exhibiting characteristics which allowed visibility
(‘VIS") to be measured.

*  Vibration data from gears for which VIS’ was not appropriatc.

*  Spcctrometric Oil Analysis (‘SOA’) data produced by analysis of gearbox oil
samples.
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Table 3 Composition table of final cluster analysis

The following sections describe the analysis of the vibration data, the SOA data is

considered separately (Section 3.4).
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Gears with ‘VIS’

The distinction between clusters appeared to be related to gear position and the
monitoring sensors. Seven clusters were observed. A composition table is shown in
Table 3.

This table represents all the data which was available, given the removal of outliers
and repeat acquisitions.

Gears 3, 4 and 10 exhibited the most consistent behaviour, regardless of sensor
location. Gears 3 and 10 fell into cluster 7, while gear 4 fell into cluster 6. Other
gears had samples in several clusters. The majority of the data fell into cluster 7.
Table 4 shows the cluster populations and their characteristics.

Cluster Number Population Characteristics

1 20 Low -none
High - AMIK, IMP, AMIE

2 3 Low -VIS
High - EIllV, EIIE

3 1 Low -IMP, STB, VIS
High - WEA, EIlV, EIIE

B 15 Low -STB
High —none

5 13 Low - WEA, AMIK
High - STB

6 79 Low - none
High - AMIE

7 89 Low - AMIK
High - VIS

Table 4 Cluster Populations and Characteristics

Gears without ‘VIS’

Initially the same cluster analysis was performed for those gears for which VIS is not
computed as was used with the other gears. A large number of small clusters with
lide significance were produced. This suggested that the iterative process used by
PLATO had formed potentially significant clusters, but then sub-divided these into
smaller and less.meaningful ones. This phenomenon tends to occur when a non-
representative sample of a statistical population is analysed in isolation. Generally
this situation may be rectified by adding data to the sample in order to make it more
representative of the whole population. Often this can be achicved by the analysis of
increased quantities of data. In a production system, it would be possible to
automate the process of iteratively using different selections of additional data, until
adequately stable and meaningful clusters were identified.

For the current analysis, there was no more data available from gears without VIS
which related to the pre-fault initiation state. For this reason, vibration samples from
three gears with “VIS® (gears 2, 6 and 7) were included in the data. These gears were
chosen since they approximately doubled the number of samples to be analysed,
and also provided a reasonable spread of data. This increased the diversity of the
data presented to PLATO without affecting the distribution of the original data. This

10
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had the required effect of encouraging the clustering algorithm to form clusters of a
useful size. This approach produced 12 clusters.

Clusters 3, 10, 11 and 12 picked out the original non-VIS gear data. The remaining
clusters contained the data which had been deliberately added. Table 5 shows the
cluster populations.

Cluster Number Population Characteristics
1 4 Low —none
High - IMP, AMIE, AMIK
2 1 Low - none
High - AMIK
3 1 Low —Imp
High - AMIK
4 5 Low -STB
High - EIIV, EIIE
< 2 Low -WEA
High - IMP, EIlV, EIIE
6 2 Low - WEA, AMIE
High - IMP, EIlV, EIIE
7 3 Low - AMIE, WEA
High - none
8 1 Low -IMP, STB
High - EIIE, EIlV, WEA
9 1 Low - AMIE
High - EIIE, ElIlV
10 32 Low -none
High - none
11 11 Low -none
High - none
12 18 Low -none
High - none

Table 5 Cluster populations and characteristics for ‘non-VIS’ gears

Analysis of Fault Related Samples

The post-initiation fault-related data samples 6 to 12 were compared with the
distribution of healthy vibration data derived from samples 1 to 5. It was anticipated
that faults in the gearbox would cause atypical patterns in the relative values of the
signal average parameters. If this happened, fault cases would be immediately
apparent since they would not fall into any of the healthy clusters.

Standard Deviation Assignment Technique

In the composition tables shown in Tables 2 and 3, a sample was allocated to the
cluster which had the nearest centre. This assignment technique is termed ‘nearest
neighbour’ assignment. Standard deviation assignment is a slight variation on this
approach. Instcad of returning the raw Euclidean distance of cach cluster, this
strategy returns the membership likelihood of cach data point. The normalisation
takes account of the differences in the standard deviation of cach cluster.

11
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Consider the situation in which a tightly packed cluster called ‘A’ occurs next to a
sparse cluster called ‘B’. The standard deviation of the clusters will be very small and
very large respectively. Because of this, the membership radius (or size), of ‘A’ will
be much smaller than that of ‘B’. Data points occurring just inside the edge of the
larger cluster ‘B’ could in fact be closer to ‘A’ while still belonging to ‘B’.

The normalisation process involves dividing the Euclidean distance between the data
point and the cluster by the standard deviation of the cluster. This is then mapped on
to an approximation of a Gaussian distribution to give a membership likelihood
value. Figure 1 shows the behaviour of the output of this assignment technique.

M embership
Likelihood

A

99 % population

Euclidean
Distance in
S.D ‘s

W 3 - S | IR BResal e

Graph showing output of S.D. Assignment Technique

Figure 1 Output of Standard Deviation Assignment technique

The advantage of this strategy is that it takes account of the standard deviation of
clusters. This provides a more accurate indicator of the cluster to which a data point
belongs.

The disadvantage of this strategy is that it cannot cope with clusters having only one
data point. This is due to the unavailability of a standard deviation value for the
cluster. Furthermore, this strategy does not work well with data points which are a
long way from a cluster. It returns zero for all data points greater than 10 standard
deviations from the centre of the cluster. As a result it is impossible to differentiate
between a data point which is 10 standard deviations from a cluster and one which is
100 standard deviations away. Figure 2a/b shows the assignment values produced
for one gear-sensor combination to the seven cluster centres (C1 to C7) identified in
the unsupervised analysis results (presented in Table 3). Figure 2 a/b illustrates the
difficulty in assessing trends away from the cluster centres.
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Figure 2 Results of the Standard Deviation Assignment technique

(a) standard scaling. (C1 to C7 are clusters identified from unsupervised analysis —

see Table 3)
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Figure 2 Results of the Standard Deviation Assignment technique

(b) Re-scaled for C6 (C6 is the cluster identified from unsupervised analysis — see

Table 3)
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3.2.2 Enclosure Assignment Technique

This approach uses the minimum and maximum parameter values for each cluster to
derive a normalised distance between a cluster and a point.

The centre of each cluster is defined as the average of the minimum and maximum
value for each dimension. The ‘spread’ value is defined as the difference between
the minimum and maximum values divided by two.

For a cluster, the enclosure distance is zero at the centre and 1.0 at a distance equal
to the maximum value of the parameter being considered. Thus, all enclosure
distances less than 1.0 represent data points which are ‘within’ the cluster enclosure.
Enclosure distance increases linearly, at a rate inversely proportional to the
Euclidean distance between the boundary of the enclosure and the centre of the
cluster (constant for any particular cluster).

Since an enclosure distance of 1.0 defines a boundary which encloses all data points,
it is immediately obvious whether new data points are cluster members or not. The
principle of this technique is shown in Figure 3.

Normalised
Distance
A
e
........... 1_4_.............
: : Euclidean
- T T T T T T TI T » Distance
0 Cluster Boundary
h showi rinci f 1 Assi nt Techni

Figure 3 Graph showing the principle of Enclosure Assignment

The values shown in Figure 3 are mapped on to a Gaussian distribution to give a
likelihood value of cluster membership. An example of the assignment results
produced by this technique is shown in Figure 4, from which it is again apparent
how difficult it is to detect trends away from the cluster centres in samples 6 to 12.

Outlying data will have a profound effect on the values generated by this technique.
The distribution of the data in the cluster is purely represented by the minimum and
maximum values. This can be mis-leading if the data in the cluster is tightly packed
around the centre with one or two values at the boundary.

A cluster containing a singleton point will cause a division by zero error since the

difference between the maximum and minimum is zero. (This value is used to
normalise the distance of a point from the centre of the cluster).

14
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Figure 4 Graph showing results produced by the Enclosure Assignment
technique

(C1 to C7 are the clusters identified in the unsupervised analysis results — see Table 3)
Weighted StDev. Enclosure Assignment Technique

This assignment technique is an improved version of the enclosure assignment
technique. It is weighted by the value the standard deviation technique would
produce given the same data point.

The weighting is done by multiplying the values from both techniques together and
converting the result into a likelihood value. The affect of this is to increase the rate
at which data moves away from a cluster. The behaviour graph is therefore sharper
than the other two techniques. This is shown in Figure 5.

15
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Figure 5 Behaviour of the Weighted Standard Deviation Enclosure
technique

The advantage of this technique is its high sensitivity to small movements in close
proximity to the cluster. Its disadvantage is that it gives no information about
movements just outside the cluster boundaries. The results of this technique are
shown in Figure 6 a/b.
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Figure 6 Results of the Weighted Standard Deviation Enclosure technique

(a) Normal scaling
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Figure 6 Results of the Weighted Standard Deviation Enclosure technique.

(b) Re-scaled for Cé6.

(C1 to C7 are the clusters identified in) the unsupervised analysis results — see Table 3)
Slope Assignment Technique

This technique is a linear approximation of the standard deviation technique. The
Euclidean distance between the cluster and the data point is simply multiplied by a
constant based on the standard deviation of the cluster.

This technique effectively fits a straight line to each side of a normal distribution.
The line cuts the X-axis at plus and minus 3.standard deviations and meets at the Y-
axis to form a point. Beyond 3 standard deviations, the values produced by this
technique become increasingly more negative. This is illustrated in Figure 7.

The advantage of this technique is its linearity. Distances greater than 3 standard
deviations from a cluster are represented by negative values rather than values
tending towards zero. This allows the distance between the data points and the
cluster to be monitored even when it is very large.

The results of the slope assignment technique are shown in Figure 8. This graphical
representation did not convey the information adequately so an inverted format was
established. An example of the inverted format is shown in Figure 9. When
compared with the alternative assignment techniques, this presentation format
provides some evidence of trends associated with samples 6 to 12.

17
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Figure 7 Behaviour of the Slope Assignment technique

This technique was chosen for all the assignment work where it was necessary to
measure the probability of a data point belonging to one of the previously derived
clusters.
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Figure 8 Results from Slope Assign technique

(C1 to C7 are the clusters identified in the unsupervised analysis results — see Table 3)
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Figure 9 Inverted presentation of results from Slope Assignment technique
(C1 to C7 are the clusters identified in the unsupervised analysis results — see Table 3)

Fault Recognition Criteria

Since cluster analysis of the vibration data was only permitted on the healthy data, it
was anticipated that fault-related data points would be recognised by their deviation
from normal clusters. In practice, automating the detection of this deviation was far
from straight forward.

Fault Detection by Comparison of Averages

The samples produced by a faulty gear were expected to be further away from the
healthy clusters than samples from healthy gears. Calculating the average distance of
a sample from all the healthy clusters gave an indication of fault probability. A small
average indicates a low fault likelihood, whereas a large average indicates a high
fault likelihood. For each gear, the mean of the average values for samples 1 to 5,
and 6 to 12 were calculated. A large difference between these two values signified a
change in the behaviour of a gear, potentially a fault.

Table 6 gives the gear-sensor combinations with the 10 largest deviation distances.

19



3.3.2

Study 11

Gear/Sensor Mean of Average | Mean of Average Deviation
1-5 distance 6-12 distance distance

4B 52.7 253.7 201.0

4A 91.8 243.0 151.2

6A 86.4 190.1 103.7

3l 28.3 111.4 83.1

7C 50.7 133.3 82.6

3B 3.5 76.5 73.0

6l 37.2 105.7 68.5

5 38.6 101.0 62.4

9B 138.0 199.8 61.8

8A 31.2 87.5 56.3

Table 6 Mean of average sample distances from healthy clusters

The table shows gear 4 as exhibiting the largest deviation distance between samples
1 to 5, and 6 to 12. Since this maximum value (201.0) is nearly twice that exhibited
by gear 6 in 3rd position (103.7), it would seem reasonable to nominate gear 4 as a
likely source of abnormality. One drawback to this technique is that it relies on all
the data being available and hence would not be suited to use in practice as new
data became available after each flight of a helicopter. The approach has also
identified that gear 4 is the most likely gear to have a fault in the context of
knowledge that a fault is present. This, again, is not the case for in-service ‘real time’
fault identification.

Fault Detection by Maximum Deviation

A similar technique involved scoring each gear-sensor combination according to the
maximum distance it moved away from any healthy cluster. The average distance of
samples 1 to 5 was calculated for each cluster and recorded. This was also done for
samples 6 to 12. The first set of results were then subtracted from the second. For
each gear/sensor combination, this gave the average movement away from each
normal cluster. There were 7 of these movement values for each gear-sensor
combination. The largest was selected from each gear/sensor combination and used
to rank the results.

Table 7 shows the top ten gear-sensor combinations according to this technique.

Gear/Sensor Max movement away | Movement value
from cluster ....
7b 6 397.8
5b 6 365.5
5¢ 6 336.1
6a 6 316.6
4b 7 293.8
4a F 234.3
3c 6 228.3
14d 6 202.9
3b 6 168.7
3i 7 156.5

Table 7 Top ten maximum movement values for gear/sensor combinations
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Clusters 6 and 7 both contained a high percentage of the total data. From this
technique it would be inferred that gear 5 or gear 7 was fault related. It is worth
noting that both these gears are on the same shaft.

The disadvantage of this technique is that it does not recognise the significance of
consistent trends in the data. Inspection of the data revealed that gears 5 and 7 do
not show any such trends. Figure 10 shows two maxima for samples 6 and 7 in
cluster 6 which are highly uncharacteristic of the samples produced by this gear-
sensor combination. The maximum deviation technique, however, is sufficiently
influenced by these outliers to conclude that gear 7 is the most likely source of
abnormality. As with fault detection by comparison of averages, this technique also
relies on all the data being available and would therefore not be viable in practice.

Membership

Likelihood Gear 7 (Sensor B - Inverted Slope Assign)

Value (inverted)
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600 7 =9=r
500 - ——c2
400 - -
00 g
200 3 ——c6
100 ¢
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100 +————= . T , T , . T . T )
1 2 3 -~ 5 6 74 8 9 10 11 12
Sample

Figure 10 Distance of gear 7 sensor B samples from normal clusters
3.3.3 Fault Detection by Trend Analysis

Following an interim review of the project, the CAA advised MJAD that more
emphasis should be placed on trend detection. This recommendation was fully
endorsed by MJAD and the subsequent work is discussed in the following sections.

3.3.3.1 Gears with ‘VIS’

This technique utilised a trend detection algorithm to identify samples moving in a
consistent manner. It was anticipated that the distance of abnormal samples from
normal clusters would ideally show an increasing trend between samples 6 and 12,
as the defect propagated.

The trend detection algorithm considers a window of five samples. The current
sample together with four previous samples are considered by the algorithm. In
practise this has the effect of reducing trend noise due to one-off samples which do
not conform to the trend. For example, data which shows an increase on 4 of 5
occasions is likely to be trending upwards.

Study 11 el



A linear regression algorithm was not used for the task of trend detection for two
reasons:

* The data contains outliers which would adversely affect the results of a linear
regression algorithm.

* The time interval between each sample was variable and unknown. A constant
interval approximation could have generated misleading results.

The chosen algorithm analyses the distance of the samples from a normal cluster
centre, and reports the statistical likelihood of the distance values increasing with
sample number. It does this by comparing the actual data with a sorted version of
the data. The sorted version is in ascending order and therefore represents the ideal
upward trend in distance values which could occur with fault development. The
number of transpositions which make the actual data different from this is counted.
This value provides a measure of how dissimilar the data is from the ideal trend. The
more differences there are, the less likely it is that a trend exists in the data. The
correspondence between the number of transposed values and this probability is
non-linear. It is a function of the number of ways of arranging the data for a given
number of transpositions. It was decided to apply this analysis to the results of
assigning the data to group 7, since this is the largest group and it represents the
better quality ‘normal’ signal averages (having above average VIS and STB, and
below average WEA and impulse-related indicators).

Trend detection was performed on the data from samples 1 to 12 for all gear sensor
combinations. Since a trend window of 5 data points was applied to 12 samples, 8
results were derived.

The results of this approach are shown in Table 8, where the column headings have
the following meanings:

TrendC7 — The likelihood of a trend away from Cluster 7: 0 signifies a perfect trend
away, 0.5 signifies no trend and 1.0 signifies a perfect trend towards.

MeanC7 — This number represents the average distance from the centre of group 7
in the moving window of 5 data points.

StDevC7 — The standard deviation of distances from the centre of group 7 in the
moving window of 5 data points.

Sample - The sample number (i.e. a value of 6 represents the results of using a
moving window from samples 2 to 6 inclusive).

Table 8 displays those records where TrendC7 < 0.5, MeanC7 >233 (i.e. 10 s.d. from
the cluster centre), and StDevC7 >100.

From the results in Table 8, it is clear that there are a large number (>50%) of
occurrences of gear 4 from different sensors. In particular, sensor C shows consistent
behaviour for samples 9 through 12, and sensor I is included at sample 6. The mean
and standard deviation for the whole data set can be seen in the bottom right-hand
corner of Table 8.

The average trend value was also calculated for each gear, by averaging the TrendC7

values across all the sensors monitoring each gear. This indicated how much the data
for each gear was moving away from, or towards a particular cluster when averaged
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across all the sensors monitoring the gear. Values were derived for all clusters and all

gears. Table 9 shows the results.

Gear-Sensor | Sample TrendC7 MeanC7 StDevC7
Combination

GEA04_A 12 0.2 280 133
GEA04_C 9 0.3 251 111
GEA04_C 10 0.4 272 103
GEA04_C 11 0.4 296 112
GEA04_C 12 0.4 401 116
GEA04_| 6 0.1 240 152
GEA04_| 7 0.4 290 110
GEAO04_| 12 0.3 382 167
GEA04_K 6 0.3 285 103
GEA04_K 12 0.3 434 154
GEAO05_| 10 0.3 261 208
GEAO05_| 11 0.4 305 191
GEAO05_| 12 0.3 288 191
GEAO06_| 10 0.3 321 242
GEAO06_| 11 0.2 331 247
GEAO06_| 12 0.4 343 236
GEA07_B 7 0.2 295 108
GEA07_B 8 0.4 263 132
GEA09_B 12 0.4 312 126

Mean: 106 44
StDev: 103 56

Table 8 Trend analysis of slope assign data

Gear Clust1 | Clust2 | Clust 3 | Clust4 | Clust5 | Clust 6 | Clust 7 | Mean
4 4.38 4.73 n/a 4.45 4.33 4.70 4.30 4.48
6 4.31 5.06 n/a 4.22 4.82 4.69 4.09 4.53
10 4.21 5.25 n/a 5.25 4.63 4.46 3.79 4.60
3 4.43 5.38 n/a 4.18 4.68 4.63 4.35 4.60
7 4.38 4.42 n/a 4.38 6.00 4.58 5.13 4.81
1 5.29 4.00 n/a 4,92 4.96 5.00 4.96 4.85
9 4.21 5.38 n/a 4.96 4.75 5.21 4.83 4.89
8 5.08 5.00 n/a 4.71 5.04 5.04 4.50 4.90
14 5.563 4.41 n/a 5.22 4.53 5.28 4.91 4.98
5 4.94 5.28 n/a 4.97 6.09 472 4.56 5.09
2 5.25 5.35 n/a 5.69 4.88 5.31 4.66 5.19
11 5.79 9:7d n/a 5.88 5.08 5.46 4.79 5.46

Table 9 Average transpositions for each gear cluster combination

Note: It was not possible 1o obtain values for cluster 3 since it contains only one data sample

and therefore does not have a valid standard deviation.
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A value less than 5.0 in Table 9 indicates the samples from a gear are trending away
from a normal cluster. A value of 5.0 indicates no trend, and a value greater than 5.0
indicates a trend towards a cluster. The scale is a non-linear function of the number
of values which are mis-positioned when compared to an ordered version of the
sequence. The function returns a value which is related to the number of ways the
given sequence can be re-ordered to improve its trend. For example, there will be
numerous ways of improving a sequence which shows very little trend, but very few
for one which is already well ordered. The function, therefore, has a low sensitivity
to changes in well ordered data, but a high sensitivity to badly ordered data. Thus,
small changes cither side of 5.0 are equally as significant as large changes near 0.0
and 10.0.

Table 9 shows that gear 4 is the only gear which shows a trend away from all
groups. Every other gear shows a trend towards at least one of the healthy clusters.
This suggests that while healthy gears are moving between normal clusters, gear 4 is
the only gear moving away from all of them. This analysis therefore clearly identifies
that gear 4 is the only gear exhibiting consistent fault-related bebaviour.

‘Non-VIS’ gears
The slope assignment results for this data did not show any obvious trends.

SOA Data

Oil samples were taken from the gearbox after each run and analysed for trace
clement composition. This provided a completely separate data source which was
independent of the vibration analysis. The SOA data reported the concentration
levels of 8 chemical elements (Fe, Mg, Al, Ti, Cu, Ag, Zn and Cd) found in the
gearbox oil. The accuracy of these samples was one part in a million. Concentrations
less than 1 ppm did not show up in the analysis. As a result, the values for all
clements apart from iron and zinc were zero. Data for 11 oil samples was provided
which related to the same time period as the first 5 vibration samples.

In a similar way to the vibration data, cluster analysis was applied to the SOA
samples. Since only two elements were detected, the analysis was two dimensional
and can therefore be visualised as shown in Figure 11.

In Figure 11, the individual SOA samples are denoted as cither a number or a
number followed by a letter. The number indicates the vibration sample to which
they relate, and the letter the number of SOA samples since the last vibration sample.
For instance SOA sample 3b is the second repeat SOA sample since the third
vibration sample.
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SOA Sample 1 through 5 including extra intermediate samples
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Figure 11 Location of first 11 SOA samples and PLATO clusters

Following sample 3, there was a major rebuild of the gearbox. This was picked up
by the cluster analysis and is shown by the discrimination of samples 1 to 3 and 3a
to 5.

Samples taken after the rebuild show an approximately linear trend of wear before
the fault is visible. Approximately equal amounts of zinc and iron appear to be worn
away in cach time interval. This implies that the wear rate is equal for both metals.

The small number of monitored clements together with the 1 ppm accuracy
prevented any form of alloy matching. Without the absolute elapsed time between
samples, even wear rate monitoring could not be used as a reliable fault indicator. If
the sampling rate was increased as the fault developed, a fixed approximation of
sample intervals would produce misleading results since any increase in the wear
rate would be cancelled out.

SOA Data Unsupervised Analysis

SOA data from a further 7 oil samples covering the post-initiation phase was
supplied to MJA Dynamics. This was of the same accuracy as the first 11 samples and
only showed results for iron and zinc.

PLATO was used to assign the new data to the existing clusters derived from the first
set of data. The results can be seen in Figure 12.

As can be scen from Figure 12 the movement of the data points after sample 5
appears to be a linear continuation of the behaviour before this sample. This
suggested that the fault was not showing in the SOA analysis. The approximately
cqual increase in the levels of both iron and zinc during the trial was more consistent
with normal wear than an abrasive fault. On the assumption that a fault had in fact
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been seeded in the gearbox, the implication was that it must be of a non-abrasive
type not amenable to SOA analysis. Cracks are typical of this kind of gear fault since
they are not expected to release debris.

SOA Sample 1 through 12 including extra intermediate samples
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Figure 12 A complete plot of the SOA data vector space

Conclusions

Consideration of the vibration data from gears with and without measurable VIS’
gave an indicaton of the location and nature of the fault. The SOA data provided
supplementary evidence concerning the nawre of the fault. The following
conclusions were drawn.

*  The unsupervised analysis of the vibration data pointed to a fault in gear 4.

. The normal behaviour of the SOA data indicated the fault was of a non abrasive
type.

Since cracks are a common type of non-wearing fault, and the vibration analysis
pointed to gear 4, the most likely fault was a crack in gear 4.

Following advice on the nature of the seeded fault, the above deduction was proved
to be accurate. The sceded fault turned out to be a progressive crack in the webbing
of gear 4.

A defect was spark eroded at the root of a geartooth. This developed into a small
crack during samples 1 to 5, but was not deemed to be significant at this stage. From
sample 5 onwards the crack extended rapidly, eventually entering the web during
sample 12. The test was stopped at this point.
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The results in Table 8 demonstrate that gear 4 was consistently recognised as faulty
from sensor C from sample 9 onwards. This finding was corroborated from sensors
A, I, and K at sample 12. The other gears identified in Table 8 prior to sample 12 are
all on shafts which mesh with gear 4’s shaft. These results indicate that the change in
the health of gear 4 has affected the meshing of these gears, since the GI values are
sensitive to the characteristics of the vibration synchronous with a gear’s rotation
(i.c. affected by its meshing characteristics).

SUPERVISED ANALYSIS OF FAULT 1 DATA

Supervised learning techniques work by detecting features which distinguish one
data set from another. In the case of fault detection, the goal is to distinguish the
post-initiation (i.e. fault present) data set from the pre-initiation (i.e. healthy) data
set. For the first seeded defect trial, gear 4 samples 6 to 12 were considered to be
faulty while all other samples from all other gears were considered to be healthy.

Initial Iterative Feature Extraction Results

The Iterative Feature Extraction technique (see Section 2.2.1) was applied to the
vibration data. The VIS, IMP, STB, WEA, AMIK, AMIE, EIIV and EIIE gear indicator
values were used (see Annex A for further details of these gear indicators). The
separation results are shown for each of the sensors monitoring gear 4 in Table 10
below. The ‘Cross over point’ column indicates the detection rate at the point where
the number of ‘false alarms’ (i.e. pre-initiation data points falling within the fault-
related area) cquals the number of ‘missed faults” (i.e. post-initiation samples
classified as ‘healthy”).

Gear No. of iterations to | Fault Capture Rate for Cross over point
Sensor achieve no false zero false alarms. Fault Capture Rate
alarms

4a 0 100% 100%

4b 43% 81%

4c 71% 93%

4

2
4i 4 43% 86%
4k 2 71% 86%

Study 11

Table 10 Number of iterations to find solution giving 0% false alarms

The following conclusions can be drawn from the above table:

*  The iterative feature extraction technique is quick to learn and does not require
much training data. Neural networks are renowned for requiring large amounts
of training data and taking a long time to learn.

*  The fault data from gear 4 sensor A is highly scparable from the normal data.

*  The fault data from gear 4 sensor C is reasonably separable from the normal data.

*  Iterative feature extraction returns the dimensions of the enclosure space it has
learned to recognise. These values could be used to set HUMS limits from

known fault data and assign reliability probabilities to the diagnosis. This would
not be possible using a neural network.
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Enhanced Pre-processing

Following the success of Iterative Feature Extraction (IFE), as described above, it was
decided to apply additional statistical pre-processing to the SGDS parameters before
the IFE analysis. The results obtained using the IFE technique on the raw parameters
for all the gear-sensor combinations are shown in Table 11. All the IFE results’ tables
in this section show those samples which fell within the boundaries identified by the
IFE technique, at the point at which processing was stopped.

The iterative process was sct to suspend calculations when the false alarm rate
dropped below 30%. This value was chosen arbitrarily as a benchmark for
comparing the performance of different pre-processing techniques. For a practical
system it may be necessary to achieve a lower false alarm rate by allowing the
algorithm to continue iterating beyond this point. It should be noted that the
definition of false alarm rate chosen expresses the number of ‘healthy’ samples
falling within the enclosure as a percentage of all the samples falling within the
enclosure. If the number of false alarms are considered as a percentage of the total
number of samples, much lower values result.

SENSOR MEL |[SAMPLE (VIS IMP STB WEA AMIK AMIE Fault

1 0.03 3.35 043 1.00 251 052| FALSE
|GEAO4 AME 10 0.04 2.60 0.47 0.69 2.26 043, TRUE
GEA04 AME 12 0.08 289 0.28 0.90 3.07 0.50| TRUE
|GEAO4 B.ME 12 0. 250 0.18 0.99 4.46 053] TRUE
|GEAO4 C.ME 8 0.15 2.35 0.34 0.92] 2.94 044| TRUE
|GEAO4 C.ME 10 0.15 2.79 0.52 0.93 A 0.38] TRUE
GEA04 C.ME 11 0.21 2.66 0.35 0.90 287 045| TRUE
|GEAO4 C.ME 12 0.01 2.73 0.28 0.53 4.84 0.60! TRUE
|GEAO4 |.ME S 0.12 2.78 0.46 0.87 2.66 044| FALSE |
|GEAO4 |.ME 6 0.11 2.41 0.31 0.93 3.19 046, TRUE
|GEAO4 |.ME 9 0.08 295 0.35 0.88 272 043, TRUE
GEA04 |.ME 10 0.06 3.04 0.42 0.91 3.02 045| TRUE
[GEAO4 KME 1 0.05 3.06 0.31 0.35 270 044| FALSE
|GEAO4 KME 6 0.08| 284 0.41 0.58 3.04 042 TRUE
GEA04 KME 9 0.04 3.06 0.25 0.28 2.18 051] TRUE
GEA04 KME 10 0.07 2.57 0.30 0.39 228 041 TRUE
GEA04 KME 11 0.16 2.80 0.39 0.43 2.87 044| TRUE
|GEAO4 KME 12 0.05 4.27 0.44 0.49 228 044| TRUE
|GEAOS C.ME 1 0.09 2.98 0.44 0.59 3.83 0.53| FALSE
GEA06 C.ME 1 0.10 275 0.49 0.58 3.26 046, FALSE
|GEAQ9 B.ME D 0.14 273 046 0.98 3.20 045! FALSE

Table 11 Contents of Fault Enclosure formed by IFE.

(Note : The SENSOR_MEL column identifies specific gear-sensor combinations)

(Overall Fault Capture Rate : 42.85% for False Alarm Rate : 28.5%)

The large number of correctly classified fault samples, shown as ‘“TRUE’ in the right-
hand column of Table 11, demonstrates that even the raw parameters are exhibiting
a degree of fault related behaviour which allows them to be largely isolated from the
healthy data. It was anticipated that pre-processing the parameters would reduce the
number of incorrectly classified samples. The results in Table 11 indicated that there
was no conseccutive misclassification of data from any one gear-sensor combination.
This suggested that it was uncharacteristic behaviour associated with single samples
which caused the misclassifications. It was decided to investigate the use of
averaging the data to reduce such effects.
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The effect of applying a moving average window

The results of using a moving average of two samples to reduce the effect of
uncharacteristic spikes in the data are shown in Table 12. (Note that wherever two
point moving average resutls are presented, the sample number will refer to the
second of the two samples used).

SENSOR MEL SAMPLE VIS IMP STB WEA AMIK AMIE Fault

GEAD4_A.ME 10 0.08 271 0.52 0.59 2.66 045 TRUE
GEAO4_AME 11 0.06 2.69 0.56 0.66 2.48 043| TRUE
GEA04_AME 12 0.08 283 0.47 0.76 2.89 046| TRUE
GEAO04_CME 6 0.49 281 0.57 0.75 2.30 043| TRUE
GEA04 CME 8 0.35 2.60 0.55 0.82 257 043| THRUE
CGEA04_CME 9 0.13 247 0.38 0.84 2.55 045, TRUE
GEA04 CME 10 0.13 2.69 0.47 0.84 2.47 043| TRUE
GEA04_CME 11 0.18 272 0.44 0.91 2.82 041 TRUE
GEAO4_|.LME 5 0.12 254 0.55 0.90 242 047| FALSE
GEAO4_|.ME 6 0.12 259 0.39 0.90 2.93 045 TRUE
GEAD4_|.ME 8 0.27 244 0.54 0.87 2.27 046, TRUE
GEA04_|.ME 9 0.17 2.76 0.46 0.88 2.54 044| TRUE
GEA04_|.ME 10 0.07 299 0.39 0.89 2.87 044| TRUE
GEAO4_KME 2 0.19 291 0.46 0.53 2.52 045| FALSE
GEAO4 KME 4 0.18 2.68 0.44 0.59 2.37 046| FALSE
GEAD4_KME 5 0.08 2.66 0.40 0.49 2.45 043| FALSE
GEA04_KME 6 0.10 277 0.49 0.57 2.91 043 TRUE
GEAO4_KME 7 0.10 2.87 0.49 0.61 295 041 TRUE
GEA04_KME 8 0.10 2.85 0.56 0.62 2.81 0.40| TRUE
GEA04_KME 9 0.06 293 0.40 0.45 2.46 046 TRIE
GEAD4_KME 10 0.05 2.82 0.28 0.33 2.23 046| THJE
GEAD4 KME 11 0.11 2.69 0.34 0.41 2.58 043 TRUE
GEAO6_CME 3 0.20 270 0.56 0.73 2.76 045| FALSE
CGEA07 BME 6 0.35 2.71 0.54 0.80 2.72 045| FALSE
GEAO9 BME 11 0.32 2.76 0.57 0.92 2.58 046| FALSE

Table 12 Fault enclosure formed after applying moving average to the data
(Note : The SENSOR_MEL column identifies specific gear-sensor combinations)

(Overall Fault Capture Rate : 60% for False Alarm Rate : 28%)

The moving average improved the separability of the data from sensors A and C but
reduced it for K and 1.

A possible explanation involved the proximity of the sensors to the faulty gear.
Sensors A and C may have a better pre-disposition for detecting abnormalities in
gear 4. Analysis of vibration paths was not possible due to a lack of detailed
technical drawings showing the exact location of the sensors. Even with drawings,
such assessment is non-trivial, and would have required confirmation by practical
measurements.

There was also a concern that gear 4 was exhibiting fundamentally different

behaviour from all other gears even before the fault started to develop. If this was -
the case, the IFE technique may be separating the data on these differences rather

than on those related to the fault.

This raised considerable concern, so a strategy was devised to test it.



4.2.2  The effect of standardisation on the moving averaged data

By standardising samples 1 to 12, by samples 1 to 5, for each gear-sensor
combination, it was possible to ensure any natural differences between the gears
were completely eliminated. This process involved calculating a moving average for
cach sample between 1 and 12, and then dividing cach of these values by the
standard deviation of samples 1 to 5. The standardised values effectively measured
variations away from the normal on a uniform scale for all gears. This new data was
processed using the IFE technique. The results are shown in Table 13.

SENSOR MEL |SAMPLE (VIS IMP STB WEA AMIK AMIE  |Fault
GEA13E.ME 6 0.00 -0.47 215 -0.30 -0.23 0.28| FALSE
GEA13E.ME 7 0.00 -0.11 -1.68 0.93 -0.25 -0.22| FALSE
GEAQ2 F.ME 10 1.29 1.39 -2.40 1.67 0.15 1.13| FALSE
GEA03 AME 12 -0.61 3.05 -1.42 0.34 -0.31 0.79| FALSE |
GEA04 AME 10 -0.64 0.90 -1.56 274 -0.40 047, TRUE
|GEAO4 AME 11 -0.77 0.79 -1.32 211 -0.91 -0.26| TRUE
GEA04 AME 12 -0.63 1.37 -1.88 -1.09 0.29 1.08| TRUE
|GEAO4 C.ME 6 1.46 0.28 -4.96 -0.43 -1.22 0.04| TRUE
|GEA04 C.ME 7 1.48 0.33 210 -0.45 -1.51 -0.05| TRUE
|GEA04 C.ME g 0.54 -0.49 -6.05 0.69 -0.75 -0.12| TRUE
[GEA04 CME | 9 -0.83 -0.96 -14.16 0.97 -0.79 1.09] TRUE
|GEAO4 C.ME 10 -0.82 -0.15 -9.78 1.00 -0.93 -0.06| TRUE
|GEA04 C.ME 11 -0.50 -0.03 -11.53 2.19 -0.33 -059| TRUE
|GEAO4 |.ME 9 -0.01 0.58 -1.42 0.96 -0.29 -022| TRUE
|GEAO4 |.ME 11 -0.48 1.96 -1.27 0.98 0.01 058, TRUE
|GEAO4 KME 10 -0.82 0.25 -1.08 -1.27 -1.02 022| TRUE
|GEAO8 CME. 10 -0.61 -0.65 212 082 -0.11 060! FALSE

Table 13 Fault enclosure formed after applying moving average and
standardisation to the data
(Note : The SENSOR_MEL column identifies specific gear-sensor combinations)

(Overall Fault Capture Rate : 40% for False Alarm Rate : 29.4%)

Table 13 shows that the standardisation process has not reduced the separability of
gear 4 from sensors A and C. This indicates that the IFE analysis has identified fault
characteristics in the data and is able to use them to distinguish faulty samples from
healthy ones from these sensor locations. The longer unbroken sequence of faulty
samples detected by sensor C indicates that the standardisation process has actually
improved the visibility of the fault from this sensor. This is further evidence to
suggest that the standardisation process, combined with a moving average, provides
a powerful tool for ensuring that fault data is not separated out based upon
characteristics of gear vibration which were present prior to fault initiation. The fact
that the final fault sample (i.c. sample 12) was only recognised from sensor A,
indicates that the indicator values returned from this sample are significanty
different from those returned from the carlier samples. This suggests that it may
ultimately be better to train the system twice, once to recognise the early stages of
failure, and then a second time to recognise the final stages of the fault’s
development. This would result in improved fault capture rates, and provide an
indication of fault development.
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Test On Unseen Data

Following the successful classification of fault data from sensor C, it was decided to
test the set of limits derived by the IFE process on the previously unseen data
samples (13-19). Since the limits were derived exclusively from data samples 1 to 12
with absolutely no ‘knowledge’ of the unseen data, this was considered to be a
challenging test, and representative of the manner in which data would be analysed
in service (i.e. by applying new data as they were acquired to boundaries which had
previously been identified from analysis of data known to relate to the existence of a
fault).

Table 14 shows the results obtained, again applying the same standardisation and
two point moving average pre-processing to the new data as was used to define the
original boundaries. (Note: Only the data from sensors monitoring gears 3,4,5 and 6
were considered. These gears mesh with, or are on the same shaft as, the fault gear.
In a real system it would be both practical and beneficial to monitor gears in
localised groups, since such gear-specific analysis should provide increased
sensitivity when compared to developing fault analysis criteria which have to apply
to the whole gearbox).

Sensor_MEL Sampl | VIS IMP STB WEA AMIK AMIE Fault
GEA04_A.ME 14 -0.33 2.03 -1.64 -0.74 -0.25 0.86 TRUE
GEA04_A.ME 16 -0.02 0.68 -1.46 —-0.68 -0.97 -0.35 TRUE
GEA04_C.ME 14 0.30 -0.22 -9.12 1.16 -0.44 -0.45 TRUE
GEA04_C.ME 16 0.63 —0.62 —4.52 —0.63 -0.85 -0.07 TRUE
GEA04_C.ME 17 0.49 -0.58 -6.71 0.78 -0.47 0.21 TRUE
GEA04_C.ME 18 -0.12 -0.72 11.09 1.64 -0.22 0.66 TRUE
GEA06_|.ME 19 -0.38 0.96 -2.07 -0.05 -0.29 1.24 FALSE

Table 14 Classification of unseen data using exactly the same fault
enclosure.
(Note : The SENSOR_MEL column identifies specific gear-sensor combinations)

(Overall Fault Capture Rate : 20% for False Alarm Rate : 14%)

The results shown in Table 14 are extremely encouraging. Samples 14,16,17 and 18
from sensor C are all correctly classified. Of the unseen fault data, only sample 15
from sensor C was missed. In the same way as sample 1, sample 13 cannot be
processed since it has no predecessor with which to form a moving average. It is
assumed that samples 12 and 19 were taken just before the rig was stopped, they
exhibit extreme behaviour and are likely to have unique characteristics which
prevents them from being classified with the other fault related data.

One hundred and eight unseen samples were classified during the test (samples 14—
19 for all sensors monitoring gears 3,4,5,6). Out of these, only 1 false alarm was
generated (gear 6, sensor I, sample 19). Six of the 30 fault related samples recorded
by the sensors monitoring gear 4, were successfully classified. Interestingly, the false
alarm was generated at the very end of the test when extreme vibration from the
fault gear may have affected other gears. In practice it is highly unlikely that a fault
would go undetected before it reached the catastrophic level recorded during
sample 19. If the last samples from all of the sensors are discounted because of their
extreme nature, the technique can be considered as having detected 6 (samples 14 &
16 from sensor A, and samples 14,16,17,18 from sensor C) in 25 (samples 14 to 18
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from sensors A, B, C, [,and K) of the unseen fault samples with no false alarms.
Considering the unseen data from sensor C alone, this figure rises to 80% (4 in 5)
with no false alarms.

It is common current HUMS practice to use one or more ‘preferred’ sensor locations
to monitor particular gears, based upon the performance exhibited (e.g. the higher
percentage fault capture rates). In this case, for the processing and analysis used,
sensor locations C and A appear best suited to detection of the first seeded defect.

Graphical Analysis

Monitoring the IFE technique progress as it processed the data, indicated that the
fault data was being classified predominantly by adjusting the boundaries related to
the STB and WEA parameters. A graphical representation of the pre-processed data
is shown in Figure 13 from which the variation between healthy and faulty samples
can be seen.

5 — —
0
VIS
. —&—|MP
2 sTB
¢ -10+ b IS WEA
{ —¥— AMIK
15+ —o— AMIE
-20 +— - - - —~+ - - - - - 4
1 2 3 4 5 6 7§ 8 9 10 11 12

Sample

Figure 13 The value of pre-processed gear parameters monitored by sensor C

Clearly, the pre-processed value of STB from sensor C is a good indicator of gear
health in this particular case. Figure 14 shows the pre-processed value of the STB
parameter for several gears. STB reflects the degree to which the fundamental gear
mesh vibration component dominates the lower frequency ranges in the signal
average, and would not necessarily have been predicted as being sensitive to the
particular fault. The result obtained confirms the advantage of the approach used,
which considers all of the parameters, rather than restricting the analysis to
individual parameters which are anticipated to be sensitive to the fault.
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Preprocessed STB Parameter Recorded by Sensor C
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Figure 14 Pre-processed STB parameter for gears monitored by sensor C

ANALYSIS OF FAULT 2 DATA
Introduction

The primary objective of the analysis of the data for the second seeded defect was to
demonstrate the performance of the Al techniques developed and configured for the
first seeded defect when applied to a different defect. There are a number of steps in
this process and success will be judged based on the satisfaction of each of them.

1  To demonstrate that the fault 1 supervised machine learning set-up was capable
of classifying the pre-initiation samples from gearbox build 2 as healthy.

2  To demonstrate that the unsupervised machine learning developed during the
analysis of seeded fault 1, was capable of identifying data from the post-
initiation samples of gearbox build 2 as being potentially faulty.

3 To improve the ability of the unsupervised machine learning to detect a fault,
by modifying the data modelling, reconfiguring the system if necessary, and/or
modifying the decision criteria.

4  To demonstrate a method of analysing SOA data which can be fused into an
Artificial Intelligence system.

5  To modify the set-up of the supervised machine learning developed for the first
fault so that it is capable of identifying characteristics of the second seeded

fault.

Six pre- and eight post-initiation samples were initially supplied for the second
seeded defect (as opposed to 5 and 7 for the first defect).
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The following notation applies to all the results presented for the second seeded
defect :

1  Distance from Cluster Centre (INVC¥).

The Group Assignment process outputs a membership likelihood (probability)
value which is related to the distance that the new point is from the cluster
centre. This distance will be denoted INVC*. Where * is the cluster number. In
order to detect trends in the behaviour of the INVC* values, and to reduce
susceptibility to random events, a moving window of 5 samples was examined
and the TPC*, AVC*, and SDC* features extracted (see below for definitions).

2 Trend Detection Algorithm (TPC¥)

In order to detect movement away from the cluster, a transformation algorithm
was developed. The algorithm considered the order in which the probability
values appeared against the size ranked order. A ‘trend value’ between 0 and
1 was returned. A perfect movement away (e.g. 35, 71, 107, 150, 2000) returned
0. A perfect trend towards returned 1. No significant trend returned the mid
value.

3  Average Distance (AVC¥)

The average value of the windowed INVC* values, gives an indication of the
general movement and attenuates any inconsistent changes.

NN

Standard Deviation (SDC¥)

The Standard Deviation of the windowed INVC* values, gives an indication of
the significance of the movement away and hence how rapidly the fault is
propagating.

Where * is the cluster number in all the above descriptions.
Data Integrity Checks

The SGDS scheduler software was used by WHL to acquire the vibration data and
compute and store the gear indicator values for the second seeded defect. The
scheduler software stores a greater range of results-related information to a relational
database. This provides more information than the SM2ACQ/SM2GEA software used
by WHL to acquire and analyse the data for the first seeded defect.

At an early stage in the analysis of the second seeded defect, data integrity checks
carried out on the status information contained in the SGDS Scheduler results
database showed that there was a possible problem with some of the measurements.

The problem related to the convergence of the signal average which was poor in a
number of cases. Poor convergence particularly influences the energy parameters
(i.e. IR & 2R, etc.). The affected signal averages were removed from the analysis.
This means that there may be differing numbers of samples for each gear/sensor
combination used in the analysis of the second seeded defect. This is a situation that
may also apply to real HUMS data.
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Results

The results have been presented below, with each subsection relating to the analysis
steps contained in the fault 2 introduction (Section 5.1). MJAD were not told of
the nature or location of the fault until after analysis step 3, the initial
analysis was carried out ‘Blind’.

Classification Of The Fault 2 Pre-Initiation Data To The Fault 1 Supervised Analysis

The first part of the analysis of the second seeded fault data was to classify the ‘pre-
initiation’ data to the fault boundaries defined by the supervised analysis technique
as configured to detect fault 1. The analysis simply identifies whether or not the data
falls within the bounded region (i.e. no numerical output values result from the
analysis).

The result was that none of the samples fell within the region previously identified
for fault 1 and therefore no false alarms were generated.

Unsupervised Analysis Using The Fault 1 Set-Up And Criteria
Gears with VIS

The approach adopted was to take the unsupervised analysis as set up for successful
detection of fault 1, and use it to analyse the fault 2 data. This permits the criteria
developed for detection of fault 1 to be tested using the new data.

As mentioned above the fault 1 set-up identified one cluster (group 7) which was
considered normal for the gears with VIS. The fault 2 post-initiation samples were
‘group assigned’ to this cluster and the same fault recognition criteria applied to the
features derived from the distance or probability information. This analysis was
identical to that reported for the first seeded defect.

The results are shown in Table 15 in ranked order of increasing INVC7.
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Decision Criteria

Distance From Cluster (InvC*) Descendinﬂ
Trend Detection Algorithm (TPC*) <0.5
IAverage Distance (AVC*) see Note 2
Standard Deviation (SDC*) >100
EAS_N (see Note 1) Sample InvC7 TPC7 VC7 SDC7
lcEAOS B o 475.1 0.117 186.82 145.7925
lcEAo7_c 3 398.3 0.408 169.84 152.2157
lcEAO2_D 13 372.2 0.242 146.76 119.2092
lcEA10_C 10 370.7 0.242 42.26 164.5408
lcEA11_F 10 341.1 0.042 149.5 101.3947
lcEAO4_A 12 332.5 0.042 185.22 161.125
lcEA0s_K 12 323.1 0.242 113.76 116.1944
IcEAO4_A 11 306.7 0.242 154.96 143.9116
lcEA14_D 13 301 0.408 71.04 115.0517
lcEA01_D 13 284 0.242 13.44 135.4443
lcEAO1 I 10 266.5 0.042 40.92 118.9702
lcEA03_I 13 205.7 0.242 69.58 121.4646
lcEAO4_A 7 181.2 0.242 211.78 108.9478
lcEAO5_K 13 175.4 0.117 141.16 111.2405
lcEA02_D 14 172.4 0.117 159.72 117.761
lcEA01_D 14 159.5 0.042 54.44 142.2536
lcEAO4_A 13 5.3 0.242 194.72 153.9847
lcEA01 1 12 32.9 0.408 62.7 106.6042
lcEA07_C 10 26.3 0.408 116.34 146.1332
lcEA03 |1 14 5.9 0.242 73.86 119.4565
lcEA0D3 K 13 16.9 0.408 64.32 130.1155
lcEA03 K 11 0 0.242 59.36 132.2862
lcEAto_C 11 4.1 0.117 49.76 161.3715
lcEAO1_I 11 -10.9 0.117 46.1 116.0002

Table 15 Details of the second seeded fault post-initiation data which were
furthest away from Fault 1, Group 7

Notes:

]I Each measurement (MEAS_N) analyses one gear from one sensor.

given to each measurement takes the form:—
GEAO4_A - This is Gear 4 monitored from sensor A.

GEA14_D - This is Gear 14 from sensor D.

and so on.

o

The notation

The unsupervised system as set-up after fault 1 had a filter of 233 applied 10 AVC7.

With this filter in place none of the samples in Table 15 would be returned and
thereforc nome of the gears with VIS, based on this set-up would be
considered as faulty.
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Gears without VIS :

The post-initiation data from the second seeded defect non-VIS gear data was ‘group
assigned’ to the three normal groups previously identified by the fault 1 set-up
(Groups 10,11,12), and the results analysed. The results are shown in Table 16.

Decision Criteria

Distance From Cluster (InvC*)* Descendingi

Trend Detection Algorithm (TPC*) <05 |

Average Distance (AVC*)

Standard Deviation (SDC*) >100
MEAS_N Sample InvC10 TPC10 AVC10 SDC10
GEA13E 14 4196 0.242 907 1645
GEA13D 14 2354 0.242 541 915
GEA13F 14 2186 0.117 529 837
GEA13J 14 1901 0.242 436 735
GEA12F 11 340 0.408 88 129
GEA13F 12 337 0.242 116 118
GEA13D 10 312 0.242 89 127
GEA12F 12 111 0.408 108 123
GEA12F 13 95 0.408 114 122
GEA13D 11 -39 0.242 55 133

Table 16a Second seeded fault post-initiation ‘non-VIS’ gear data which were
furthest away from Group 10

(AVC11 > 233 highlighted)

Decision Criteria

Distance From Cluster (InvC*) DescendingJ

Trend Detection Algorithm (TPC*) <0.5 l

Average Distance (AVC*) d l
Standard Deviation (SDC*) >100
MEAS_N Sample InvC11 TPC11 AVC11 SDC11
GEA13E 14 5305.8 0.242 1209.54 2051.68
GEA13D 14 3463.2 0.408 748.98 1358.69
GEA13F 14 3053.4 0.117 814.1 1159.89
GEA13J 14 2909.8 0.242 717.66 1103.93
GEA13F 12 837.8 0.408 251.04 300.29
GEA12F 11 822.1 0.242 192.36 318.69
GEA13D 6 447.3 0.408 107.66 171.96
GEA13E 11 412.8 0.408 151.14 141.00
GEA12F 12 172.3 0.408 231.64 301.22
GEA13E 12 155.6 0.408 163.84 137.94
GEA12F 13 149.9 0.408 240.6 297.97
GEA13E 13 106.4 0.242 150.4 139.60
GEA13D 7 38.5 0.117 103.52 173.32
GEA13D 8 17.9 0.408 103.64 173.26

Study 11

Table 16b Second seeded fault post-initiation ‘non-VIS’ gear data which were
furthest away from Group 11

(AVC11 > 233 highlighted).




Decision Criteria

Distance From Cluster (InvC*) Descending ]

Trend Detection Algorithm (TPC*) <0.5

Average Distance (AVC*)

Standard Deviation (SDC*) >100
MEAS_N Sample InvC12 TPC12 AVCi12 SDC12
GEA13E 14 3854 0.242 851 1505
GEA13J 14 2307 0.408 543 889
GEA13F 14 2217 0.117 590 851
GEA13F 12 668 0.408 169 252
GEA12F 11 649 0.242 135 257
GEA13J 8 380 0.117 115 133
GEA13E 12 56 0.408 78 115
GEA13E 13 55 0.408 79 114
GEA13D o 41 0.242 100 134
GEA12F 12 39 0.408 145 252
GEA12F 13 32 0.408 146 252

Study 1

Table 16c Details of the second seeded fault post-initiation ‘non-VIS’ gear
data which were furthest away from Group 12

(AVC12 > 233 highlighted).

The criteria previously used for the identification of significant trends in the fault 1
data (TPC*<0.5, AVC*>233, and SDC*>100) were applied to this data. (Note that the
AVC >233 criterion was not applied to the results shown in Table 16). The AVC>233
criteria is equally applicable to this analysis, since it is a value which has been
normalised by the spread of the cluster (i.c. the standard deviation of the parameter
values within the cluster). This value of AVC results from application of the slope
assignment process (described in Section 3.2.4), and represents a distance of 10
times the standard deviation of the parameter values within the cluster.

Application of the above criteria clearly identifics a problem with gear 13 at
sample 14 from all 4 sensors (D, E, F, and J) used to monitor the gear. Thc
problem was highlighted when the analysis was performed with any of the ‘normal’
groups (10,11,12). In the case of group 11, sample 12 for the gear 13 from sensor F
also satisfied the criteria, although the AVC11 value of 251 is close to the 233
threshold applied.

Inspection of the results revealed that the system had detected increased levels of
IMP, EIIE, EIIV and to a lesser extent AMIK. All of these indicate the presence of an
impulsive event.

The system has at this stage positively identified Gear 13 to be displaying fault
behaviour at sample 14 with a slight indication at sample 12, using the detection
criteria set-up based upon the fault 1 data. Aware that early detection of the fault
was once of the underlying goals further analysis was carried out.
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The Effect Of Improved Pre-Processing on the Unsupervised Machine Learning

Drawing on the conclusions of the analysis of the first seeded defect, it was decided
to pre-process the data in an attempt to detect the fault at an earlier stage.

Improved pre-processing techniques were developed during the supervised analysis
of the data from the first seeded defect. They require computation of the change in
the post-initiation GI values as a proportion of the statistical spread in the pre-
initiation values, followed by application of a moving average filter to the data (as
described in Section 4.2).

The effect of the above method is to highlight changes in the GI's performance by
comparing them to the pre-initiation results on an individual gear / sensor basis.
The previous method compared the GI's performance with the spread of values
contained within each particular cluster. The objective of using the pre-processing
was to improve the sensitivity before the clustering stage.

Because the GI values have been pre-processed differently, the previously defined
clusters are no longer valid. The mean centre standardisation process has the effect
of displacing the data from a number of places on the multi-axis graph onto the
origin. As before, the pre-initiation samples are used for defining the clusters.

The results of applying the modified pre-processing techniques to the unsupervised
analysis of data from the second seeded defect are detailed in the subsections below.

5.3.3.1 Gears with VIS

Study 11

The clustering analysis resulted in the definition of just one cluster.

The previous trend interpretation criteria were applied to the data from gears for
which VIS was computed. The results are shown in Table 17.

Inspection of Table 17, reveals that from sample 9 onwards gears 1, 2, and 3 (and to
a lesser extent gear 4) consistently exhibit the greatest deviations from the pre-
initiation results. It should be noted that gears 1 and 2 are on the same shaft, as are
gears 3 and 4. Gears 1 and 3 mesh.
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Decision Criteria

Distance From Cluster (InvC*)

Trend Detection Algorithm (TPC*) <0.5
Average Distance (AVC*) >233
Standard Deviation (SDC*) >100
Sample 7 || Sample 8 || Sample 9 || Sample Sample Sample Sample Sample
10 1 12 13 14
MEAS_N | MEAS_N | MEAS_N || MEAS_N || MEAS_ N | MEAS_N [ MEAS_N | MEAS_N
GEAO02_E | GEAO1_E | GEAO1_E | GEAO1_E | GEAO1_E | GEA14_ D | GEA14_D
GEAO2_E | GEAO1_| | GEAO1_| | GEAO1_| | GEAO1_E | GEAO1_E
GEAO2_E | GEAO2_E | GEAO2_E | GEAO2_E | GEAO1_| | GEAO1_F
GEAO03_I | GEA0O2_D | GEA02_E | GEAO2_E | GEA02_D | GEAO1_|
GEA04_K | GEAO2_E | GEA02_G | GEA02_G | GEAO2_E | GEA02_D
GEAO3_| | GEAO3_| | GEA03_| | GEA02_D | GEAO2_E
GEAO4_A | GEAO3_K | GEAO4_| | GEAD2_E | GEAD2_F
GEAO04_K | GEAO4_A | GEAO4_K | GEAD2_F | GEA02_D
GEAO5_| | GEA04_K | GEAO5_| | GEA02_G | GEAO2_E
GEA10_C | GEAO5_| | GEAO6_A | GEA03_| | GEAO2_F
GEA10_| | GEAO7_| | GEAO8_A | GEA03_K | GEA02_G
GEA10_C | GEA11_G | GEA04_C | GEA03_I
GEA04_| | GEAO3_K

Table 17 Results of applying the alternative pre-processing technique
(The relevant INVC, TPC, AVC, and SDC parameter values are tabulated in Annex B)

Gears without VIS

Decision Criteria

Distance From Cluster (InvC*) —l

Trend Detection Algorithm (TPC*) <0.5

Average Distance (AVC*) >233 =]

Standard Deviation (SDC*) >100 g
MEAS_N Sample InvC1 TPC1 AVC1 SDCH1
GEA13J 14 3711 0.242 952 1395.363
GEA13D 14 2439 0.242 683 889.51
GEA13F 14 2365 0.042 627 873.824
GEA12F 12 974 0.042 402 460.874
GEA13E 11 742 0.042 298 270.601
GEA13J 9 654 0.242 247 302.162
GEA13E 12 472 0.117 375 253.996
GEA13J 11 460 0.408 347 273.292
GEA12F 13 114 0.242 425 443.087
GEA13J 10 45 0.242 255 295.812

Study 11

Table 18 Results of applying the improved pre-processing technique to
gears without VIS
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5.3.3.4
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With reference to Table 18, the results were generally in line with those previously
found, (i.c. the gear 13 data at sample 14 is clearly atypical). The result from gear 13
sensor J has consistently high values from sample 9 to sample 14. The only sample
for sensor J in the range 9 to 14 which has not satisfied the selection criteria is
sample 12, since sample 13 was discarded due to poor convergence of the signal
average.

Analysis Of Complete Gearbox Using One Unsupervised System

At this stage it was difficult to compare the overall performance of the gearbox as the
analysis was split into two groups depending upon whether VIS was computed for
that gear. So it was decided to investigate combining the data from the gears with
VIS and without VIS into one system by the exclusion of VIS from the processing.
The idea being that the interpretation of all the gears’ behaviour could be
implemented in a single analysis in which the trend analysis criteria would depend
on the characteristics of a single cluster.

The results showed that the later samples from gear 13 displayed a significant
deviation from their normal behaviour. Gears 1, 2, 3 and 4 were also showing
significant changes and this was consistent with the previous results.

Single occurrences of particular gears appeared in the abnormal behaviour listing
but only single samples and not from different sensors. Investigation of this revealed
that the gears’ presence was not due to the fact that there was a large increase in a
GI value but because the pre-initiation samples were extremely stable, the resultant
small standard deviation (s.d.) values falsely amplifying the normalised results.

Pre-Initiation Stable Parameter Compensation

Some parameter values varied only very slightly during the pre-initiation phase,
resulting in a very small s.d. value for that particular GI value.

Similarly, some parameter values were constant during the pre-initiation phase,
resulting in a zero value for the relevant s.d.. Initially the s.d. values for these
parameters were set to unity. However this will tend to diminish the importance of
these parameters compared to those which exhibit a fraction more variability during
the pre-initiation phase. The result being that some gears might be incorrectly
highlighted and some distinct changes overlooked.
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For example, compare the following (bypothetical) stability (STB) values for two
different gears

Gear (STB) GEAR 04 GEAR 01
Sample Number

1 1.0 1.0

2 1.0 1.0

3 1.0 0.982
B 1.0 1.0

5 1.0 1.0
Average 1.0 0.9964
S.D. 0.0 0.012
6 0.98 0.98

7 0.95 0.95

8 0.90 0.90

9 0.88 0.88
10 0.85 0.85
11 0.80 0.80

Table 19 STB values for Gear 04 and Gear 01 (Hypothetical Data)

As can be scen, the trends in values for samples 6 to 11 are the same for both gears
but GEAR 04 has a s.d. of 0 and therefore the trend is not highlighted since the post
initiation values will be normalised by unity. Whereas GEAR 01 with a very small
s.d. will produce a very large value when standardised, this example illustrates the
situation which had to be overcome.

Ideally it would be better to obtain more pre-initiation data so that an accurate s.d.
could be calculated. However the problem was compensated for by constraining the
minimum s.d. value. The minimum s.d. value was based upon the mean value of the
pre-initiation samples. By comparison of the non-zero pre-initiation s.d.s with the
cquivalent mean values, a judgement was made to set the s.d. for any data with an
s.d. less than 2% of the average value, to 2% of the average value.

The results obtained using stable value compensation are shown in Table 20. (Note
that the previously used AVC*>233 criterion was not applied to the results shown in
Table 20. However, the effect of applying this criterion can be inferred from
examination of the numerical results in Table B2 of Annex B).



Decision Criteria

Distance From Cluster (InvC*)

Trend Detection Algorithm (TPC*) <0.5
Average Distance (AVC*)
Standard Deviation (SDC*) >100
Sample 7 Sample 8 Sample 9 Sample 10 || Sample 11 || Sample 12 || Sample 13 || Sample 14
MEAS_N | MEAS_N MEAS_N || MEAS_N | MEAS_N MEAS_N || MEAS_N MEAS_N
GEA13_F | GEA14_ D | GEA14_ D | GEA14_ D | GEA14_E | GEA14_E | GEA14_ D
GEA13_J | GEA13_J | GEA13_E | GEA14_J | GEA12_C | GEA14_J | GEA14_E
GEAO1_E | GEA12_K | GEA13_F | GEA13_D | GEA12_F | GEA13_D | GEA14_J
GEA10_| GEAO1_E | GEA13_J | GEA13_E | GEA01_D | GEA13_E | GEA13_D
GEAO1_E | GEA12_K | GEA13_J | GEAO1_| GEA12_C | GEA13_E
GEAO2_A | GEA0O1_D | GEA12_C | GEAO2_F | GEA12_F | GEA13_F
GEA03_B | GEAO1_E | GEA12_F | GEA02_E | GEA0O1_D | GEA13_J
GEA03_| GEAO1_| | GEAO1_E | GEA02_G | GEA0O2_E | GEA12_C
GEA03_B | GEA02_D | GEAO1_| GEAO3_A | GEA02_G | GEA12_F
GEAO4_B | GEAO2_E | GEA0O2_D | GEAO03_| GEAO02_H | GEA01_D
GEAO05_B | GEA0O2_G | GEA0O2_G | GEAO6_A | GEAO3_A | GEA02_D
GEAO6_A | GEA0O3_A | GEA0O2_H | GEAO0S8._| GEAO03_| GEA02_E
GEAO08_| GEA03_G | GEA03_K | GEA10_C | GEA04_K | GEAO2_F
GEA11_G | GEA03_B | GEA0D4_K | GEA11_G | GEA0O6_A | GEA02_G
GEA11_H | GEA03_| GEA05_B GEA11_G | GEA03_|
GEA04_K | GEA06_A GEA04_K
GEAO05_B | GEA07_I GEA06_A
GEAO6_A | GEAO08_I GEA07_C
GEAO07_|I GEA10_C GEA11_F
GEA10_C | GEA11_F GEA11_G
GEA10_H | GEA11_H
GEA11_G
GEA11_H

Study 11

Table 20 Results of applying stable parameter compensation

(The relevant INVC, TPC, AVC, and SDC parameter values are tabulated in Annex B)

These results clearly show that gear 13, and gears 1 and 2 are trending away
(TPC<0.5) from their normal behaviour at a significant rate (SDC>100), with the

results from particular sensors returning consistently abnormal behaviour.

At this stage, the analysis was clearly showing the capability of unsupervised analysis
to identify abnormal behaviour and categorise the severity of changes using the

trending characteristics.

The SGDS scheduler also calculates energy-related

parameters, such as 1R and 2R information, and it was decided to include these in
the analysis to see if an improved result could be obtained.

43




5.3.3.5 Addition of the energy parameters 1R and 2R

The final clustering analysis was carried out using IMP, STB, WEA, AMIK, AMIE, EIIE,
EITV, IR & 2R. (As noted in Section 5.2, the data was pre-filtered to ensure that cases
where signal average convergence was poor were excluded to ensure that stable 1R
and 2R values were used). As a result of the different analysis configuration, there
was a greater spread of trend analysis values. Consequently the absolute values
used for the criteria were adjusted accordingly. In addition, the results seemed less
variable than previously, and it was possible to set selection criteria based upon the
INVC1 value of the individual sample, rather than using AVC1 (the average value of
INVC1 in a window of 5 samples) as was previously necessary for fault 1. The results
from this analysis are shown in Table 21.

INVC1 >433
TPC1 <0.5
AVC1
SDC1 >433
Sample 7 Sample 8 Sample 9 Sample 10 || Sample 11 || Sample 12 || Sample 13 || Sample 14
MEAS_N MEAS_N MEAS;N MEAS_N | MEAS_N MEAS_N MEAS_N MEAS_N
GEA13_F | GEA13_J | GEA13_E | GEA13_D | GEA12_E | GEA14_F | GEA14_D
GEAO1_E | GEA13_F | GEA13_E | GEAO2_E | GEA14_J | GEA14_E
GEA02_E | GEA13_J | GEA13_J | GEAO3_K | GEA13_D | GEA14_F
GEAO2_F | GEA12_E | GEA12_C GEA13_E | GEA13_D
GEAO1_E | GEAO1_E GEAO01_D | GEA13_E
GEAO02_E | GEAO2_F GEAO1_E | GEA13_J
GEA02_F | GEA03_K GEAO01_K | GEA12_E
GEA10_C | GEA10_C GEAO02_E | GEA01_D
GEA03_C | GEAO1_E
GEAO01_K
GEA02_E
GEA03_C

Table 21 A combined analysis of all the gears including the 1R and 2R
parameters

(The relevant INVC, TPC, AVC, and SDC parameter values are tabulated in Annex B)

The result shows that the unsupervised system has detected significant changes in
the behaviour of various gears at a very carly stage. With generally increased
numbers of ‘alerts’ gencrated as the fault developed. The alerts tend to be from
gears 12,13, 15, 1 and 2, with gear 13 exhibiting the greatest number of alerts. From
sample 8 it can be seen that gear 13 could therefore be considered as a suspect gear.
This suspicion is reinforced as each additional sample is analysed.

At this stage MJAD were told that the faulty gear was gear 13.

A review of the previous results will quickly identify that gear 13 was always the
most likely fault gear. The Al system’s ability to detect the fault was clearly proven.

The presence of gear 1, gear 2 and gears 12 and 14 in the above table, does not

diminish the result in any way. Indeed their presence is useful to confirm the result
because these gears are in the same arca of the gearbox and it may not be
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unreasonable to expect the disruption of one gear to affect the behaviour of one
meshing with it or close by.

This result confirms the recommendation in the carlier report that gears should be
considered in localised groups.

Closer examination of the normalised GI data revealed that the initial indications of
fault behaviour were detected at sample 8 by the Enhanced Impact Indicator (EIIE
and EIIV), the 1R and 2R also recorded increases. As the fault progressed the
Amplitude Modulation Indicator increases together with the Wear (WEA) indicator.
Towards the final stages of failure the impact indicator (IMP) returned significantly
high values. The Stability Indicator (STB) showed a consistently decreasing value
with increasing gearbox usage.

It is important to note that all four sensors used to monitor the gear 13 provided
uscful information giving an indication of the gear’s deteriorating condition. This
meant that even though some samples had been lost due to data integrity checks, the
overall system was able to deal with the situation and still return at least one fault
instance for every sample from 8 onwards except for sample 12.

The behaviour of the standardised GI values and the 1R and 2R energy parameters
are detailed in Annex C.

Spectrometric Oil Analysis

As for the first seceded defect, the pre-fault initiation SOA samples for the second
defect only contained non-zero values of iron and zinc (Fe and Zn). The raw SOA
values for the second defect are shown in Figure 14, from which it is apparent that
the pre-initiation values (samples 1 to 6) were again indicative of an approximately
linear wrend of wear.

Additional SOA Data Pre-Processing

Information on oil additions was available for the fault 2 SOA data, which permitted
compensation of the results for oil consumption. The compensated results are
shown in Figure 15. The results were compensated further for the normal wear rates
occurring during the pre-initiation samples (Figure 16).  Since there was no
information regarding the intervals at which the samples were taken, the wear rate
compensation assumed cqui-spaced intervals. It was considered useful to apply this
compensation cven though the sampling intervals were unknown, since it is
illustrative of the processing which would be necessary in an in-service system. In
addition, the resultant increasingly negative compensated values indicate that the
time interval between samples may well decrease with increasing sample number.

SOA Data Unsupervised Analysis

The fault 1 and fault 2 pre-initiation SOA data only contained values greater than
1ppm for Fe, and Zn. Unsupervised analysis of the fault 2 post-initiation SOA data
immediately revealed the presence of abnormal amounts of Cu from sample 8
onwards.



Cu can be generated from wear of copper, brass or bronze materials. Typical %
clemental composition of brass and bronze are shown in Table 22.

Alloy Material || Copper Zinc (Zn) | Tin Lead
(Cu) (Sn) (Pb)

Brass 66 % 33 %

Bronze 89 % 0.5 % 10 % 0.5 %

Table 22 Elemental Composition of Brass and Bronze

The lack of any significant change in the compensated Zn values indicated that the
wear was not attributable to a brass part. Further differentiation between Copper
(Cu) and Bronze parts was not possible since tin (Sn) and lead (Pb) values were not
available in the SOA data. In addition, since the SOA values provided have a
resolution of 1 ppm, there would have to be 170 ppm Cu generated before Pb could
be detected. The maximum Cu value measured for the second seeded defect was 16
ppm. It is believed that oil analysis can be performed with an order of magnitude
greater sensitivity, and that Sn and Pb levels can be monitored. Such improvements
would have considerably increased the scope for analysis of the data.

Figure 15 SOA data for second seeded fault (raw values)
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Figure 17 SOA data for second seeded fault (compensated for oil loss and
normal wear)

20

There are a range of copper, brass and bronze parts within the S61 MRGB. Without
increased resolution, or a greater range of elements, it was impossible to
unambiguously identify the source of the debris generated.

Although it was not possible to unambiguously identify the source of the Cu debris
from SOA analysis alone, it was possible to ‘fuse’ the information manually with the
results of the vibration data analysis. Combination of the results of the two
independent analyses allowed the possible sources of Cu to be correlated with the
fact that the Al analysis of the vibration data independently identified a problem with
gear 13. There is a copper-based component associated with this gear. The high
levels of Cu identified from analysis of the SOA data therefore provide further
substantiation that there was indeed a problem with gear 13. When the gearbox was
stripped, the copper-based component associated with gear 13 (i.e. the gear with the
sceded defect) was found to have experienced severe wear.

In this way, on the assumption that the vibration and SOA results are correlated, the
vibration data can be used to pin-point the source of the oil debris more accurately
than if the existing SOA analysis was used in isolation. In addition, the fact that oil
debris is generated suggests that the gear fault detected by the vibration analysis is
cither causing, or exacerbating, wear of the copper-based component.

The SOA data clearly provided valuable information which has been manually fused
at a higher level in the decision process. Unfortunately it can not currently be fused
cffectively at a low level in the analysis because the SOA data relates to the gearbox
health as a whole and not individual gears, and would require detailed alloy
composition information for the detection of individual component wear.

5.3.5 Supervised analysis of the second seeded fault
The second defect was seeded on a gear for which VIS cannot be calculated due to
phase cancellation affects. The IFE algorithm was implemented using IMP, STB,

WEA, AMIK, AMIE, EIIV and EIIE (i.c. the same indicators as were used for the first
sceded defect, with the exclusion of VIS).
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In order to demonstrate the importance of data pre-processing, IFE was performed
after ecach of four processing stages. Stages 1 to 3 replicate processing previously
used in the development of the fault 1 set-up (and the equivalent sections for the
first defect are referenced).

1 Raw Gear Indices (GI) Values (c.f. Section 4.1 for the first defect).
2 GI values with a moving average window applied (c.f. Section 4.2.1).

3  Mean centred standardised with a moving average window applied (c.f. Section
4.2.2).

4  The inclusion of additional parameters (which were not available for the first
fault), mean centred standardised with a moving average window applied.

System Training

As for the unsupervised stage, data that was identified as being potentially corrupt
due to poor convergence of the signal average was removed from the analysis.

The faulty gear in this case was Gear 13. Samples 7-14 from this gear were
considered faulty (the number of fault samples varied for each sensor because some
had been removed because of poor convergence).

The sensors were first analysed collectively and then individually. The
measurements which are being isolated are shown in the ‘sensors’ column in Table
23. (Note that becausce the boundaries which are determined for each sensor
individually are different to those for the collective analysis, there is no guarantee
that the sum of the faults bounded, or total samples bounded for each sensor will
cqual the value from analysis of all the sensors collectively).

The % fault capture rate is the measure of how successful the IFE process has been
in isolating all the faulty samples. The % false alarm rate is a measure of how many
healthy samples have been bounded incorrectly by IFE (as a proportion of the total
number of samples bounded).

1 Raw GI values

Sensors Number of || Number of || Faults Total % Fault % False

Samples fault bounded bounded Capture Alarm rate
samples rate

GEA13 All | 703 25 7 10 28 30

Sensors

Sensor D 703 = 1 1 20 0

Sensor E 703 ¥ 4 1 1 14 0

Sensor F 703 6 2 2 33 0

Sensor J 703 7 1 1 14 0

Study 11

Table 23 Raw Gl values
This result was similar to that obtained for fault 1, where an initial overall fault

capture rate of 42.8% was obtained, compared with a value of 28% in Table 23
above.
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2 GI values with a moving average window applied (two data points).

Sensors Number of | Number of || Faults Total % Fault | % False

Samples fault bounded bounded Capture Alarm rate
samples rate

GEA13 All | 643 25 3 3 12 0

Sensors

Sensor D 643 5 1 1 20 0

Sensor E 643 7 2 2 29 0

Sensor F 643 6 = 6 83 17

Sensor J 643 4 5 6 71 17

Table 24 Gl values with a moving average window applied

The results in Table 24 show an increased fault capture rate for individual sensors,
particularly sensors F and J.

3 Mean centred standardised with a moving average window applied

The data has been modelled by determining the change in each of the parameter
values as a proportion of the spread of the results from a healthy gearbox build. The
data was presented in terms of the deviation from the mean, with a moving average
window of two applied.

Sensors Number of || Number of || Faults Total % Fault % False

Samples fault bounded bounded Capture Alarm rate
samples rate

GEA13 All 643 25 4 o 16 20

Sensors

Sensor D 643 5 4 4 80 0

Sensor E 643 7 3 3 43 0

Sensor F 643 6 5 5 83 0

Sensor J 643 T4 4 4 57 0

Table 25 Mean centred standardised with a moving average window applied
This technique returns a marked improvement for sensors D and E.

4 The inclusion of additional parameters, mean centred standardised with a
moving average window applied.

Two additional parameters, 1R and 2R, have been included. (These parameters were
not available in the database for the first fault).
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Sensors Number of || Number of | Faults Total % Fault % False

Samples fault bounded bounded Capture Alarm rate
samples rate

GEA13 All | 643 25 18 22 72 18

Sensors

Sensor D 643 5 4 4 80 0

Sensor E 643 7 6 6 86 0

Sensor F 643 6 5 5 83 0

Sensor J 643 7 5 6 71 16

53.52

Study 1l

Table 26 The inclusion of additional parameters, mean centred
standardised with a moving average window applied

An extremely well defined fault area has been defined with 3 sensors showing good
fault capture results and no false alarms.

System Testing (Classification Of Unseen Data)

Additional data was made available (designated samples 15 to 24) this was used to
test the IFE technique. The test consisted of classifying the new data points against
the IFE boundaries defined for the second seeded defect (i.e. gear 13). As most
success had been achieved with the pre-processed data, (sub paragraph 4 above),
these boundaries were chosen and the ‘unseen data’ processed accordingly. Samples
15 to 24 have been acquired from the test rig in sequence but no indication was
given as to whether the samples were healthy or not.

The sensors were first analysed collectively i.e. the post initiation samples for gear 13
from every sensor were used to define the fault boundaries and then each sensor

was considered individually.

In order to measure the success, the samples available for classification have been
shown in the table column ‘available samples’.

Subsequent to performing the analysis MJAD were informed that samples 17 to 24
were post-initiation. This enabled the fault capture rate to be computed.

1 Classification of unseen data to pre-defined boundaries

Collective Analysis (all sensors)

Gear Sensor Available Sample % Fault
Measurement Name Sample Numbers Capture rate
Numbers Bounded
GEA13 Sensor D 15.17.20,22, 20 20
23,24
Sensor E 15,16,17,18,19, 16,19,20, o7
20,21,22,24 21,22
Sensor F 20,21,24 - 0
Sensor J 16,17,18,20,24 20 25

Table 27 Classification Of All Measurements To The Collective Fault
Boundaries



Table 27 shows the result of classifying the ‘unseen’ gear 13 data to the boundaries
defined by all the sensors (72 % of the original data was used to define the
boundaries). As can be seen Sensor E has shown a fair detection efficiency. (Note
that the two point moving average process results in one less sample being available.
This is taken into account when computing % Fault Capture Rate values in this
Section of the report).

At this stage the measurements for all the gears and from every sensor have been
classified and there were only 7 ‘false alarms’, as shown in Table 28.

Gear Measurement Sample Number
GEA14_F 21
GEA12_D 18
GEA12_D 20
GEA12_D 21
GEA02_D 24
GEA04_H 21
GEA13_E 16

Table 28 False alarm gear samples

It can be scen that sensor D appears to suffer from an increased number of false
alarms, although since there were in actual fact approximately 100 measurements
classified, the false alarm rate was quite small.

Tables 27 and 28 highlight the ability of the IFE algorithm to isolate the fault related
samples. Particularly consistent results are obtained for sensor E, but even the
results from sensors D and J are encouraging. What has to be borne in mind when
examining the data is that the IFE fault enclosure arca is tightly defined. It may be
that there is slight variability in the GI values and the remaining samples are just
outside the boundaries. Nevertheless in a practical system a fault alarm could have
been triggered at sample 20 on the basis of a consecutive alarm from one sensor or
as an alarm from two scparate sensors. The false alarms are from gears in the same
arca as gear 13 and as there is obviously disruption of the general performance of
the gearbox it is open to interpretation as to whether or not these would be
considered as false alarms.

To ascertain whether improved performance could be obtained, the unseen data was
then analysed using the enclosure arcas defined for the individual sensors. The
unscen data did not classify into any of the individual sensors’ fault enclosure areas.
Further investigation showed that for a given ‘unseen’ sample one or more of the GI
values were just outside the boundary of the tightly defined enclosure arca even
though the actual behaviour of the GI and energy parameters was very similar. The
Normalised GI values can be seen in Annex C.

2 Optimised Boundaries

The result of analysing the unscen data (i.e. samples 15 -24) indicated that the
boundaries may have been over-tightly defined from a restricted data-set.  The
Supervised Learning technique draws boundaries around the faulty samples. The
objective however is to detect faults with no false alarms, so it is a valid argument to
move the boundaries to just before the next ‘healthy’ sample. So cach of the
boundaries was examined to see if it could be moved without capturing any of the
healthy training data. The new enclosed arca may be thought of as a ‘non-hcalthy’
arca rather than a ‘fault’ arca. At this stage any measurement which was not from
gear 13 (sample 7-14) was considered to be healthy.



In order to optimise the boundaries as described above each of the sensors was
considered separately. Table 29 shows the results. The available samples are shown
in a column in order to enable the success of the classification to be judged.

The optimised boundaries have improved the classification of the unseen data. Sensor E
has returned the most consistent result, with the correct classification of 3 consecutive
samples, although a further improved result was anticipated by taking the optimisation
one step further.  As stated above, the boundaries were optimised by moving them to

the nearest ‘non-fault’ sample and this included samples related to other gears.

Gear Available Sample % Fault Mis-classified results
Measurement Sample Numbers | Capture Gear | Sensor | Sample
Numbers Bounded | rate
GEA13 15,17,20.22, 24 20 Gear 1| SensorD | 18
Sensor D only 23,24
GEA13 15,16,17,18, 19,20,21 | 43 NONE
Sensor E only 19,20,21,22,
24
GEA13 20,21,24 NONE 0 NONE
Sensor F only
GEA13 16,17,18,20, 16 0 GEA12| Sensor J | 20, 21
Sensor J only 24 GEA13ISensor JI16

5305
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Table 29 Classification Of The Gear 13 Data On An Individual Sensor Basis
Optimisation of boundaries using fault gear data only

The data supplied relates to one gear/fault type. The IFE analysis so far has
attempted to separate out the post-fault initiation data for this gear, from data which
includes data for a range of other gears.

In practice, other gears could exhibit similar behaviour without any fault being
present on those gears. In addition a given gear/fault type could manifest itself
differenty at each sensor location. It is therefore appropriate to repeat the IFE
analysis using only the gear 13 data since any real HUMS system could be configured
to only use the enclosure identified to detect a gear 13 fault from a given sensor.

Gear Available Sample % Fault Capture

Measurement Sample Numbers rate
Numbers Bounded

GEA13 15,17,20,22, 20,22,23, 80

Sensor D only 23,24 24

GEA13 15,16:17,18,19, | 15,19,20, 57

Sensor E only 20,21,22,24 21,24

GEA13 20,21,24 NONE 0

Sensor F only

GEA13 16,17,18,20, 16,17,18, 100

Sensor J only 24 20,24

Table 30 Classification Of The Unseen Data To Optimised Boundaries For

Fault Gear Data

o
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The results of this final optimisation process appear to be very successful, with very
high capture rates for sensors D and J, and reasonably good results for sensor E.
Whilst there were a couple of false alarms, it is likely that these could be removed at
the expense of a reduced fault detection rate if required.

The reason for the poor behaviour of sensor F can be inferred from the graphical
results presented in Figures 7 and 8 of Annex C. Inspection of this data, and
comparison with the equivalent results for the other sensors, reveals a difference in
the sensor F's parameter values between the training data, and the additional unseen
data. The behaviour of the STB parameter in particular is noticeably different. Given
the fact that sensor F is in a similar physical position relative to the fault gear
compared to the other sensors, the physical reasons for this difference in behaviour
arc not clear. It is however noticeable that sensor J, which returned the best fault
capture rate, was also the sensor which produced the best quality signal averages
from the pre-initiation data.

OVERALL DISCUSSION OF THE RESULTS
Unsupervised Analysis

The unsupervised analysis has successfully identified the presence and location of
both seeded faults. This has been achieved without knowledge of the faults’
existence, and/or tailoring of the approach to suit the particular fault type and
location. Furthermore, the approach adopted should not be specific to the Sol
MRGB application, but could reasonably be expected to work for any other
helicopter type’s MRGB.

The only pre-requisite for the approach adopted is the existence of a set of data
which is known not to contain faults (i.c. represents a ‘healthy’ gearbox). Whilst this
might be more difficult to guarantee in an in-service application of the technique, the
fact that there would be considerably greater quantities of data available, should
offset this limitation.

In the work reported, a knowledge of the nature and location of the seeded fault was
then successfully used to optimise the processing applied to the data. This would
also be possible in a real application, as the results of stripping suspect gearboxes
became available. This approach ensures that the system continues to build on
experience, and so the performance should continue to improve with time, and
would be able to reflect failure modes which might only become apparent once a
gearbox has been in service for a period of time.

Supervised Analysis

It has been possible to train the iterative feature extraction technique used to
recognise both the seeded defects. Furthermore, application of the data from the
sccond defect to the boundaries identified for the first defect did not produce any
false alarms.

The best results were obtained by making use of the maximum amount of
information known about the fault. This included only applying the analysis to those
sensors which might reasonably have been expected to have visibility of cach fault,
based upon their locations. This is an entirely reasonable constraint to apply when
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configuring the system for practical in-service application. It also ensures that the
fault can be localised to an individual gear, and that the same fault may be
recognised in slighty different ways for different gears. Using this approach, fault
capture rates of 80 to 100% were achieved with very low false alarm rates. In some
cases zero false alarm rates were achieved during training (see, for example, the
results in Tables 10 and 26).

Data Fusion

The restricted information content of the SOA data has precluded detailed
investigation of automating the process of fusing vibration and SOA data to arrive at
more positive conclusions.

The work performed has, however, illustrated how the two data sources can be used
to corroborate and/or refine the fault diagnosis. For instance, in the first seeded
defect, there were no trends visible in the SOA data. This would be consistent with
the fault which was detected by the vibration being a crack, rather than the result of
a wear mechanism. Conversely, for the second fault the SOA trends observed were
consistent with wear, not for the gear itself but an associated copper-based
component.

In this way the SOA data has produced a verdict (such as ‘no wear present’ or ‘wear
present in a Copper or Bronze part’), which can then be combined with the output
from the vibration analysis (such as ‘localised defect to gear 4%), to produce an
overall diagnosis. The fusion of data would therefore be achieved by the process of
combining the outputs from the individual subsystems. This would be entirely
feasible to achieve in service, and would have the added advantage that it probably
reflects the way in which the human expert currently arrives at an overall decision.
This has advantages when such systems are put into service, since the human
operator can relate to the way in which the system has arrived at a decision, and is
therefore more likely to trust it.

Considerations for Practical Implementation
Database Contents and Structure

The degree of success which can be achieved using the Intelligent Data Management
(IDM) techniques described for in-service routine analysis of HUMS data, is
fundamentally constrained by the contents and structure of the database used to
contain the HUMS information. The major requirements are outlined below :

* Querying Facilities : It must be possible for the system to automatically
gencerate and refine requests for data. This might be by the use of a database
engine which supports industry standard Structured Query Language (SQL).

* Sampling Rates : The system must be able to correlate data which may
originate from different sources at different sampling rates (e.g. vibration
measured routinely every flight, SOA data periodically sampled). Typically this
would require different tables within the database schema, linked by a common
field (such as airframe hours).



®* Maintenance information : The system requires access to maintenance
information which can be related to the primary data (i.c. SOA or vibration
data). This can be used for three main purposes :

- To screen inappropriate data (e.g. if a gearbox has been replaced, then
data prior to the replacement should not be included in trends following
the replacement).

—  To pre-process data (e.g. use the quantity of oil added to compensate SOA
values).

—  To automate supervised learning (since a particular maintenance action
might be used to represent a particular fault, then data immediately prior
to the action could be assumed representative of that fault type and used
for supervised training purposes).

Maintenance information should be recorded in a coded or numeric fashion to avoid
any ambiguities that might otherwise arise through the use of free text, which would
prevent an automated system from making efficient use of the information.

®* Quality of data : The recorded values should maintain the original
measurement accuracy (e.g. if the SOA values are measured to greater than
1ppm, then they should be recorded to that accuracy). Additionally, any
parameters which indicate the quality of the measurement (such as the
convergence of the signal average) should also be recorded, since they will
permit the system to learn to reject particular measurements as being of
inadequate quality.

* FDR Data - Another source of variability in HUMS data will be the flight
conditions under which the data was acquired. Most HUMS systems acquire the
data in specific ‘flight regimes’. Hence an in-service system would be able to
analyse data from cach flight regime individually, and then ‘fuse’ the results to
gain further corroboration of a particular fault. Rather than just record the flight
regime which has been identified however, it is preferable to store the actual
flight data recorder (FDR) parameters in the database. This is because the flight
regimes are recognised from combinations of particular flight parameters falling
within given ranges of values. Since there may be variability in the measured
vibration data within a particular flight regime, access to the stored FDR
parameters would enable identification of the cause of any such variability.

* Component material information : SOA data relate to particles suspended in
oil samples. These particles could derive from any part which could be subject
to wear within the gearbox. Without information on the materials used to make
every part within the gearbox, it is impossible to accurately corroborate the
results derived from independent analysis of vibration data.

6.4.2 Unsupervised Analysis

Unsupervised analysis works best with larger quantities of data. For this reason, the
unsupervised analysis presented in this report considered all the data from the
gearbox as a whole. For the routine analysis of in-service HUMS data, much greater
quantitics of data would be available. It is likely that greater sensitivity could be
achieved by analysing the vibration data for cach gear (or ceven cach gear-
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sensor/flight regime combination) individually. Given the greater quantities of data
available, it is likely that there would be sufficient statistical spread of data to
prevent any clusters associated with normal behaviour becoming fragmented. If
fragmentation did occur, this could be identfied automatically by the system.
Additional data could then be added to the analysis sample (e.g. data from other
gears, sensors, or flight regimes), or the criteria used to define clusters adjusted
iteratively. These processes could be automated.

In the work reported, the major requirement for the initial identification of ‘normal’
clusters is the existence of a set of data which is known not to contain faults (i.c.
represents a ‘healthy’ gearbox). This may be more difficult to guarantee in real
HUMS data. However, provided that the majority of the data related to non-fault
cases the approach should still be successful. Indeed, it may even be possible to use
the initial analysis of the data to identify problem gearboxes, since these might form
clusters which were distant from the main ‘normal’ cluster.

For the analysis of real data, the success of the approach will be critically dependent
upon the quality of the data used. Prior to automated in-service unsupervised
analysis of HUMS data, it will be essential to screen out any data which is known to
be of poor, or questionable quality (e.g. where the signal average has not converged,
or the data is near the border of a flight regime). However, since the approach
adopted has made use of tends in the data, the analysis of more than one data
sample will make the analysis less sensitive to spurious indications, than an alerting
system based upon analysis of individual samples. If the system detects trends which
arc subsequently attributable to factors other than gearbox health, it should then be
possible to use the supervised learning facilities to detect future occurrences of the
same event. Additional work would be required to confirm that the number of
samples included in the trend analysis window length was adequate for in service
application.

Supervised Analysis

The success of supervised analysis of in-service HUMS data will be dependent upon
a knowledge of particular faults which have occurred.

Whilst it may be possible to automate the training process in the longer term, initially
it is likely that it would have to be manually initiated. The training process would
require that the system enabled the user to identify particular samples as relating to a
fault. The data might derive from a number of instances of the same fault type. It is
likely that the fault enclosures defined would be specific to particular gears as
monitored by one or more sensors.

Once the fault enclosures were defined, they could routinely be used to analyse new
data downloaded from the aircraft.

With the greater quantities of data available, it might also be worthwhile

investigating more complex neural net configurations since they could effectively

accommodate more complex fault enclosures than the IFE technique reported.
However, the IFE technique can be applied relatively simply to existing HUMS
systems, and can provide the user with an indication of how the system has learnt to
recognise the fault.



CONCLUSIONS

The following conclusions are drawn from the work reported in this document :

Both unsupervised and supervised analysis of the vibration data was able to detect
and locate both seeded faults.

The unsupervised techniques which were developed for the first seeded defect were
found to be equally applicable to the second seeded defect.

The supervised analysis technique as configured for the detection of the fault 1
characteristics classified the pre-initiation samples from fault 2 as healthy. The
configuration did not therefore generate any false alarms cven though the fault 2
data had been acquired after the gearbox had been completely rebuilt.

Some gears have variability in the gear parameters they produced. A range of ‘noise’
rejection/trend analysis techniques were developed for efficient detection of the
fault related abnormal behaviour.

SOA data produced no indication of the first defect, although a rig rebuild was
detectable. This indicated that the fault was of a type which did not produce fine
debris. This was subsequently confirmed.

An cffective pre-processing set-up was used on the SOA data for the second defect
which highlighted the fact that there was a gearbox problem from sample 8 onwards.
The results from this analysis were judged to be most effectively fused manually at a
higher level rather than treating the SOA data in the same way as cach GI value. The
inclusion of additional elements and/or increased resolution would have enabled
identification of the source of the wear debris. SOA data may be of more use with
increased accuracy since this might permit alloy matching at lower levels of debris
concentration.

RECOMMENDATIONS

The use of Al techniques to analyse data from both the first and second seeded
defects on the S61 MRGB has been very successful. The potential advantages from
the inclusion of such techniques in HUMS to address the problems of recognising
faults which the system has not previously seen, and automating the fault detection
process, are evident.

To achieve successful implementation within in-service HUMS, further development
and refinements are required as outlined below. These refinements reflect the
limitations of the investigation possible with the data to date, namely that it is seeded
fault rig data for one gearbox type gathered under well controlled conditions.

The refinements required could be progressively addressed (not necessarily in the
order below), so that success at each stage could be clearly demonstrated before
progressing to another stage.

1 Restricted range of faults : The techniques to date have only been

demonstrated on two gear faults. Direct in-service implementation of the
techniques without exposure to additional fault data could be premature.
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Additional sceded fault data from the S61 rig should be used to test the
developed Al techniques further. The MJAD SGDS scheduler software could be
used to cost-cffectively gather increased amounts of data. This would be
particularly useful during the pre-initiation stages which would enable more
accurate pre-processing of the data.

Restricted baseline data : The data to date has been derived from 2 gearbox
builds. The variability in results between different gearboxes of the same type,
and/or different builds of the same gearbox is therefore not known. In a real
system it would be preferable not to have to establish each aircraft’s normal
vibration pattern before pre-processing could be carried out. Analysis of the
pre-initiation samples from a number of gearbox builds would help establish if
a healthy bascline dataset for a particular gearbox type was achievable, or
whether fault detection sensitivity was compromised.

Single gearbox type : To date the techniques have been successfully
demonstrated on the S61 MRGB. This is only one of many gearbox types which
HUMS systems monitor. The applicability of the techniques to other gearbox
types should be investigated prior to implementation within HUMS. Data from
an alternative seeded fault programme could be used for this purpose, if such
data were available.

Restrictions of seeded fault rig data : The data to date has been derived
from sceded faults in a gearbox rig. An artificial fault generation mechanism has
therefore been used, and the rig operated under well controlled (known)
conditions. Naturally occurring ‘real world” faults may therefore exhibit different
characteristics, and the conditions under which data is gathered will almost
certainly be less well controlled, resulting in a greater degree of variability in
the data. The use of vibration data recorded by an in-service HUMS to test the
effect of such variability on the performance of the system as set up, would
certainly be a significant step forward towards removing these limitations.
Obviously any data containing a fault will be very scarce. If an undetected fault
was discovered during routine overhaul the preceding HUMS data could be
examined for evidence. An alternative approach would be the examination of
HUMS data where a number of false alarms have been generated. In this case,
the Al techniques could be used to determine their susceptibility to similar false
alarms.

SOA data limitations : Analysis of the SOA data clearly showed its ability to be
processed into a very uscful health indicator. However, the following additional
information would greatly increase its ability to discriminate the source of wear
debris :

*  resolution greater than 1ppm

. increased range of elements

*  details of parts’ material alloy elemental composition

*  details of operating hours
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The improvements in the SOA analysis techniques developed with the above
information could be investigated using either rig and/or in-service data. In-
service data could also be used to ascertain the degree to which the rig data was
representative of real data, and to provide greater quantities of data.

Premature implementation of the techniques into in-service HUMS without
additional investigation as outlined above could lead to poor initial performance and
end user perception. However, given the correct additional development results, the
techniques are capable of alleviating many of the problems experienced with
existing HUMS systems, and greatly increasing the systems’ performance.



o0

Study Il



Annex A SGDS Gear Indicators

Table A1 : SGDS Gear Indicators

Gl Long Name Function
VIS Visibility Indicator To indicate how visible a gear is in the signal average.
IMP Simple Impact Indicator To detect the presence of localised gear defects which
produce low level impulses in the data.
STB Stability Indicator To detect the presence of strong submesh frequency
components.
WEA Wear Indicator To detect the presence of distributed faults on gears.
AMIK Amplitude Modulation To detect the localised gear defects from their effect on
Indicator (Kurtosis) the gearmesh component.
AMIE Amplitude Modulation The detection of modulation effects associated with
Indicator (Energy) whole gear faults (e.g. misalignment, eccentricity).
EllV Enhanced Impact Indicator | To detect the presence of localised gear defects which
Value produce extremely low level impulses in the data.
EIE Enhanced Impact Indicator | To detect the presence of localised gear defects which
Event count produce extremely low level impulses in the data
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Annex B Tabulated Unsupervised Analysis Results

Table B1 Results of applying the alternative pre-processing technique for

unsupervised analysis of the data from gears without VIS.

(Note : This table details the parameter values [or the results presented in Table 17 in the main body

of the report)

Decision Criteria

Distance From Cluster (InvC*)

Descending J

Trend Detection Algorithm (TPC*) < 0.5

Average Distance (AVC*) >233 |
Standard Deviation (SDC*) >100 |
MEAS_N Sample InvC1 TPC1 AVC1 SDC1
GEA02_E 14 7126 0.242 6676 1426
GEAO1_E 14 3698 0.117 2956 956
GEA02_F 14 3392 0.242 931 1234
GEA14_D 14 1844 0.042 758 870
GEA03_| 14 1209 0.042 878 250
GEA04_K 14 1177 0.117 891 477
GEA02_G 14 1032 0.042 705 247
GEA02_D 14 992 0.242 698 221
GEAO1_F 14 940 0.042 377 284
GEA06_A 14 931 0.242 838 323
GEA11_G 14 775 0.117 540 262
GEA09_B 14 752 0.042 422 230
GEA08_A 14 434 0.042 286 114
GEA02_E 13 8624 0.242 6578 1409
GEAO1_E 13 4068 0.242 2637 921
GEA14_D 13 1801 0.242 403 700
GEA04_K 13 1596 0.408 922 499
GEA06_A 13 1343 0.117 746 348
GEAO03_| 13 1044 0.242 769 194
GEA02_D 13 914 0.408 597 174
GEA02_G 13 888 0.242 607 188
GEA11_G 13 843 0.242 470 236
GEA09_B 13 629 0.242 331 162
GEA07_| 13 477 0.117 352 103
GEAO1_| 13 437 0.117 538 195
GEA02_F 13 327 0.242 276 116
GEA02_E 12 7525 0.242 5405 1638
GEAO1_E 12 3382 0.242 1993 815
GEA03_| 12 946 0.242 626 201
GEA06_A 12 942 0.117 511 247
GEA02_G 12 760 0.242 459 201
GEA11_G 12 598 0.242 329 173
GEAO1_| 12 373 0.042 481 250
GEA10_C 12 37 0.408 665 765
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Table B1 (continued) : Results of applying the alternative pre-processing
technique for unsupervised analysis of the data from gears without VIS.

(Note : This table details the parameter values for the results presented in Table 17 in the main body

of the report)

MEAS_N ....cont. Sample InvC1 TPC1 AVC1 SDC1
GEAO2_E 11 4755 0.242 3899 2319
GEAO1_E 11 1802 0.242 1321 775
GEA10_C 11 1532 0.117 664 766
GEAO01_| 11 758 0.042 413 310
GEA03_K 11 598 0.042 238 284
GEA02_D 11 576 0.042 453 155
GEAO03_| 11 527 0.242 474 188
GEAO07_| 11 469 0.008 242 153
GEA06_A 11 462 0.117 327 196
GEAO05_| 11 385 0.117 354 283
GEA02_G 11 384 0.242 305 206
GEA02_E 10 5347 0.042 2945 2l
GEAO1_E 10 1828 0.042 955 886
GEA10_C 10 1669 0.042 356 657
GEAO1_| 10 789 0.008 260 290
GEAO05_| 10 757 0.042 281 311
GEAO03_| 10 662 0.042 368 263
GEA02_D 10 608 0.008 344 212
GEA04_K 10 401 0.117 508 508
GEA10_| 10 273 0.408 242 128
GEAO02_E 9 6637 0.117 1884 2605
GEAO1_E 9 2106 0.042 589 826
GEA04_K 9 1331 0.117 431 547
GEA03_| 9 664 0.042 235 249
GEAO02_E 8 2762 0.408 557 1103
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Table B2 Results of applying pre-initiation stable parameter compensation for

unsupervised analysis of the data from all the gears

(Note : This table details the parameter values for the results presented in Table 20 in the main body

of the report)

Decision Criteria

Distance From Cluster (InvC*)

Descending L

Trend Detection Algorithm (TPC*) <0.5

Average Distance (AVC*)

Standard Deviation (SDC*) >100 |
MEAS_N Sample InvC1 TPC1 AVC1 SDC1
GEA13_E 14 6441 0.117 1675 2392
GEA13_D 14 3876 0.008 1787 1251
GEA13_J 14 3584 0.242 1057 1274
GEA13_F 14 2778 0.408 720 1034
GEA01_D 14 2605 0.008 1249 918
GEAO02_E 14 1650 0.042 1386 374
GEA14_D 14 156569 0.242 877 573
GEAO03_| 14 964 0.242 861 218
GEA02_F 14 928 0.008 327 301
GEA06_A 14 897 0.242 810 315
GEA02_G 14 873 0.042 594 209
GEA04_K 14 821 0.117 524 328
GEA11_G 14 575 0.117 398 205
GEA14_J 14 572 0.042 325 226
GEA12_C 14 417 0.408 268 161
GEA14_E 14 408 0.042 257 147
GEA11_F 14 312 0.242 187 104
GEA07_C 14 274 0.042 113 114
GEA02_D 14 242 0.117 315 172
GEA12_F 14 170 0.408 355 306
GEA13_D 13 2234 0.008 992 877
GEA01_D 13 2055 0.008 723 723
GEAO02_E 13 1926 0.008 1049 645
GEA06_A 13 1302 0.117 721 339
GEAO03_| 13 1156 0.042 716 320
GEA04_K 13 1015 0.042 366 337
GEA02_G 13 741 0.042 455 209
GEA11_G 13 648 0.242 347 186
GEA14_J 13 582 0.008 199 229
GEA14_E 13 448 0.042 182 177
GEA13_E 13 417 0.117 401 268
GEA03_A 13 381 0.408 294 134
GEA02_H 13 251 0.042 135 127
GEA12_C 13 128 0.242 179 178
GEA12_F 13 95 0.117 321 333
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Table B2 (continued) : Results of applying pre-initiation stable parameter

compensation for unsupervised analysis of the data from all the gears

(Note : This table details the parameter values for the results presented in Table 20 in the main body

of the report)

MEAS_N....cont. Sample InvC1 TPC1 AVC1 SDC1
GEA02_E 12 1281 0.008 657 585
GEAO03_| 12 969 0.042 482 338
GEA06_A 12 914 0.117 494 241
GEA12_F 12 735 0.008 298 352
GEA01_D 12 720 0.042 314 320
GEA02_G 12 646 0.042 299 226
GEAO01_| 12 472 0.408 512 222
GEA11_G 12 429 0.408 242 124
GEA14_E 12 334 0.042 78 139
GEA12_C 12 299 0.042 145 198
GEA08_| 12 230 0.242 157 110
GEAO03_A 12 224 0.242 215 171
GEA10_C 12 31 0.408 628 734
GEA13_D 11 1500 0.117 660 621
GEA10_C 11 1461 0.117 626 736
GEA13_E 11 761 0.042 336 294
GEA12_F 11 720 0.117 160 281
GEAO1_E 11 696 0.242 539 312
GEAO01_| 11 685 0.042 409 316
GEAO03_K 11 568 0.117 215 279
GEA02_D 11 520 0.008 266 215
GEA12_C 11 457 0.408 802 1403
GEA13_J 11 451 0.408 349 240
GEAO06_A 11 444 0.117 314 191
GEA02_G 11 325 0.042 162 177
GEA02_H 11 319 0.008 82 122
GEA14_D 11 307 0.242 289 200
GEA14_J 11 305 0.042 74 138
GEA07_| 11 268 0.008 174 107
GEA11_F 11 256 0.008 121 107
GEA04_K 11 254 0.042 163 124
GEAO08_| 11 250 0.042 106 123
GEA05_B 11 44 0.242 114 114
GEA11_H 11 7 0.242 211 271
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Table B2 (continued) : Results of applying
compensation for unsupervised analysis o

re-initiation stable parameter
the data from all the gears

(Note : This table details the parameter values for the results presented in Table 21 in the main body

of the report)

MEAS_N....cont. Sample InvC1 TPC1 AVC1 SDCH1
GEA10_C 10 1590 0.042 331 630
GEA02_E 10 1238 0.117 396 537
GEAO01_| 10 774 0.042 271 316
GEAO01_E 10 727 0.042 393 370
GEAO01_D 10 670 0.042 161 268
GEA13_E 10 622 0.042 178 229
GEA03_I 10 596 0.042 283 281
GEA03_K 10 541 0.408 103 221
GEA11_H 10 530 0.042 200 280
GEA02_D 10 519 0.008 160 194
GEAO6_A 10 492 0.008 218 219
GEA14_D 10 483 0.042 211 247
GEA02_G 10 384 0.117 93 167
GEAO03_A 10 368 0.117 170 191
GEA04_K 10 303 0.042 113 128
GEA07_| 10 258 0.008 116 118
GEA11_G 10 244 0.042 146 123
GEA10_| 10 198 0.242 141 110
GEAO5_B 10 174 0.042 102 123
GEA12_K 10 142 0.117 136 103
GEA13_J 10 134 0.117 259 268
GEA13_F 10 122 0.117 152 167
GEA03_B 10 —29 0.408 56 116
GEAO01_E 9 863 0.042 242 357
GEA02_E 9 833 0.117 141 346
GEA13_J 9 622 0.008 232 286
GEAO03_| 9 621 0.117 167 246
GEA11_H 9 555 0.242 103 228
GEA14_D 9 500 0.117 107 219
GEAO1_| 9 498 0.117 112 202
GEAO6_A 9 455 0.117 128 176
GEAO3_A 9 434 0.242 103 168
GEA11_G 9 319 0.042 100 121
GEA05_B 9 310 0.008 61 126
GEA12_K 9 277 0.042 105 119
GEA08_| 9 255 0117 55 104
GEA03_B 9 197 0.408 62 112
GEA13_J 8 538 0.008 98 221
GEAO1_E 8 426 0.042 61 183
GEA13_F 8 379 0.117 124 181
GEA10_| 8 282 0.042 100 119
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Table B3 : Results of unsupervised analysis of data from all the gears, including

the 1R and 2R parameters

(Note : This table details the parameter values for the results presented in Table 21 in the main body

of the report)

Decision Criteria

Distance From Cluster (InvC*) >433 Descending |

Trend Detection Algorithm (TPC*) <0.5

Average Distance (AVC*)

Standard Deviation (SDC*) >433 |
MEAS_N Sample InvC1 TPC1 AVC1 SDC1
GEA14_F 14 20873 0.117 6031 7786
GEA13_E 14 9186 0.042 2926 3154
GEA13_D 14 7063 0.242 3774 2364
GEAO1_E 14 3961 0.242 2358 884
GEA13_J 14 3930 0.408 1848 1043
GEA12_E 14 3197 0.042 1548 1080
GEA01_D 14 2732 0.042 1377 889
GEA02_E 14 2322 0.242 3694 2079
GEA14_E 14 2315 0.042 730 810
GEA03_C 14 1815 0.242 841 744
GEA14_D 14 1664 0.117 905 596
GEAO01_K 14 1293 0.042 1082 437
GEA14_F 13 6609 0.408 1957 2464
GEA02_E 13 5949 0.042 3239 2529
GEA13_D 13 2243 0.242 2342 2092
GEA01_D 13 2083 0.042 831 710
GEAO1_E 13 2039 0.242 1653 715
GEAO01_K 13 1810 0.008 826 588
GEA03_C 13 1674 0.408 515 586
GEA13_E 13 1615 0.117 1219 483
GEA14_J 13 651 0.408 891 727
GEA02_E 12 6457 0.008 2048 2371
GEA12_E 12 1812 0.042 903 840
GEA03_K 12 1357 0.008 837 447
GEA13_D 11 4535 0.242 2017 2205
GEA13_E 11 1751 0.242 1035 472
GEA10_C 11 1462 0.242 661 710
GEAO1_E 11 1396 0.117 1257 912
GEA03_K 11 1268 0.008 566 460
GEA13_J 11 1238 0.117 991 487
GEA02_F 11 1072 0.242 1302 912
GEA12_C 11 554 0.408 915 1522
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Table B3 (continued) : Results of unsupervised analysis of data from all the gears,

including the 1R and 2R parameters

(Note : This table details the parameter values for the results presented in Table 21 in the main body

of the report)

MEAS_N ....cont. Sample InvC1 TPC1 AVC1 SDC1
GEAO1_E 10 2557 0.008 971 1038
GEAO02_E 10 2296 0.008 753 952
GEAQ02_F 10 2122 0.117 1087 1057
GEA12_E 10 1965 0.042 543 754
GEA10_C 10 1595 0.117 369 614
GEA13_E 10 1449 0.242 679 468
GEA13_J 10 1444 0.008 744 599
GEA13_F 10 1026 0.042 519 494
GEA02_F 9 2506 0.242 661 980
GEAO1_E 9 1837 0.042 461 708
GEAO02_E 9 1447 0.117 292 578
GEA13_J 9 1365 0.042 456 536
GEA13_F 8 1143 0.117 312 452
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Annex C Normalised GI values from the second gear fault

Normalised GI Figure 1. Normalised Gl Values (Gear 13) Sensor E
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Normalised Gl Figure 2. Normalised Gl Values (Gear 13) Sensor E
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Note :
1 Figure 1 includes samples 7-14, which were used as training data for the supervised learning.
2 Figure 2 includes samples 15-24 (i.e. the additional ‘unseen’ data) which were used 1o test the

supervised machine learning.
. Only good quality data is plotted (i.c. poor signal average convergence data has been
removed).
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Normalised GI Figure 3. Normalised Gl Values (Gear 13) Sensor J
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s Figure 4. Normalised Gl Values (Gear 13) Sensor J
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Note :
1 Figure 3 includes samples 7-14, which were used as training data [or the supervised learning.
2 Figure 4 includes samples 15-24 (i.e. the additional ‘unseen’ data) which were used to test the

supervised machine learning.
3 Only good quality data is ploued (i.c. poor signal average convergence data has been
removed).
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Normalised Gl Figure 5. Normalised Gl Values (Gear 13) Sensor D

Normalised GI Figure 6. Normalised Gl Values (Gear 13) Sensor D
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1 Figure 5 includes samples 7-14, which were used as training data for the supervised learning.
2 Figure 6 includes samples 15-24 (i.c. the additional ‘unseen’ data) which were used to test the

supervised machine learning.

3 Only good quality data is ploued (i.e. poor signal average convergence data has been

removed).
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Normalised GI Figure 7. Normalised Gl Values (Gear 13) Sensor F
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Normalised GI Figure 8. Normalised Gl Values (Gear 13) Sensor F
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Note :
1 Figure 7 includes samples 7-14, which were used as training data for the supervised learning.
2 Figure 8 includes samples 15-24 (i.c. the additional ‘unscen’ data) which were used to test the
supervised machine learning.
3 Only good quality data is ploued (i.e. poor signal average convergence data has been
removed).
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