Private Pilot Licence Examinations – 081 Principles of Flight Aeroplane

		Aeroplane		Helicopter	
Syllabus Reference	Syllabus details & Associated Learning Objective	PPL	Bridge Course	PPL	Bridge Course
080.00.00.00	PRINICIPLES OF FLIGHT				
081.00.00.00	PRINCIPLES OF FLIGHT: AEROPLANE				
081.01.00.00	Subsonic aerodynamics				
081.01.01.00	Basics concepts, laws and definitions				
081.01.01.01	Laws and definitions:	х	х		
	(a) conversion of units;	х	х		
	(b) Newton's laws;	х	х		
	(c) Bernoulli's equation and venture;	х	Х		
	(d) static pressure, dynamic pressure and total pressure;	х	х		
	(e) density;	х	х		
	(f) IAS and TAS.	х	Х		
081.01.01.02	Basics about airflow:	х	Х		
	(a) streamline;	х	Х		
	(b) two-dimensional airflow;	х	Х		
	(c) three-dimensional airflow.	х	Х		
081.01.01.03	Aerodynamic forces on surfaces:	х	Х		
	(a) resulting airforce;	х	Х		
	(b) lift;	х	Х		
	(c) drag;	х	Х		
	(d) angle of attack.	х	Х		
081.01.01.04	Shape of an aerofoil section:	х	Х		
	(a) thickness to chord ratio;	х	Х		
	(b) chord line;	х	Х		
	(c) camber line;	х	Х		
	(d) camber;	х	Х		
	(e) angle of attack.	х	Х		
081.01.01.05	The wing shape:	х	Х		
	(a) aspect ratio;	х	х		
	(b) root chord;	х	Х		
	(c) tip chord;	х	х		
	(d) tapered wings;	х	х		
	(e) wing planform.	х	Х		
081.02.01.00	The two-dimensional airflow about an aerofoil				
081.02.01.01	Streamline pattern	х	х		
081.02.01.02	Stagnation point	х	х		
081.02.01.03	Pressure distribution	х	Х		
081.02.01.04	Centre of pressure	х	х		
081.02.01.05	Influence of angle of attack	х	х		
081.02.01.06	Flow separation at high angles of attack	х	х		
081.02.01.07	The lift – α graph	х	Х		
081.03.01.00	The coefficients				
081.03.01.01	The lift coefficient CI: the lift formula	х	Х		
081.03.01.02	The drag coefficient Cd: the drag formula	х	Х		
081.04.01.00	The three-dimensional airflow round a wing and a fuselage				
081.04.01.01	Streamline pattern:	х	Х		

	(a) span-wise flow and causes;	х	х	
	(b) tip vortices and angle of attack;	х	Х	
	(c) upwash and downwash due to tip vortices;	х	Х	
	(d) wake turbulence behind an aeroplane (causes, distribution and duration of the phenomenon).	x	х	
081.04.01.02	Induced drag:	х	Х	
	(a) influence of tip vortices on the angle of attack;	х	х	
	(b) the induced local α;	х	Х	
	(c) influence of induced angle of attack on the direction of the lift vector;	x	х	
	(d) induced drag and angle of attack.	х	х	
081.05.01.00	Drag			
081.05.01.01	The parasite drag:	х	Х	
	(a) pressure drag;	х	х	
	(b) interference drag;	х	Х	
	(c) friction drag.	х	Х	
081.05.01.02	The parasite drag and speed	х	Х	
081.05.01.03	The induced drag and speed	х	Х	
081.05.01.04	The total drag	х	Х	
081.06.01.00	The ground effect			
081.06.01.01	Effect on take off and landing characteristics of an aeroplane	х	Х	
081.07.01.00	The stall			
081.07.01.01	Flow separation at increasing angles of attack:	х	Х	
	(a) the boundary layer:	х	Х	
	(1) laminar layer;	х	Х	
	(2) turbulent layer;	х	Х	
	(3) transition.	х	Х	
	(b) separation point;	х	Х	
	(c) influence of angle of attack;	х	Х	
	(d) influence on:	х	Х	
	(1) pressure distribution;	х	Х	
	(2) location of centre of pressure;	х	Х	
	(3) CL;	х	Х	
	(4) CD;	х	Х	
	(5) pitch moments.	х	Х	
	(e) buffet;	х	Х	
	(f) use of controls.	Х	Х	
081.07.01.02	The stall speed:	Х	Х	
	(a) in the lift formula;	Х	Х	
	(b) 1g stall speed;	Х	Х	
	(c) influence of:	Х	Х	
	(1) the centre of gravity;	Х	Х	
	(2) power setting;	Х	Х	
	(3) altitude (IAS);	Х	Х	
	(4) wing loading;	Х	Х	
	(5) load factor n:	Х	Х	
	(I) definition;	Х	Х	
	(II) turns;	Х	Х	
004.07.04.00	(III) forces.	Х	Х	
081.07.01.03	I ne initial stall in span-wise direction:	X	Х	
	(a) Influence of planform;	X	Х	
	(b) geometric twist (Wash out);	X	X	
	(c) Use of allerons.	Х	Х	

081.07.01.04	Stall warning:	х	х		
	(a) importance of stall warning;	х	Х		
	(b) speed margin;	х	Х		
	(c) buffet;	х	Х		
	(d) stall strip;	х	х		
	(e) flapper switch;	х	Х		
	(f) recovery from stall.	х	Х		
081.07.01.05	Special phenomena of stall:	х	х		
	(a) the power-on stall;	х	х		
	(b) climbing and descending turns;	х	Х		
	(c) t-tailed aeroplane;	х	Х		
	(d) avoidance of spins:	х	Х		
	(1) spin development;	х	Х		
	(2) spin recognition;	х	Х		
	(3) spin recovery.	х	Х		
	(e) ice (in stagnation point and on surface):	х	Х		
	(1) absence of stall warning;	х	Х		
	(2) abnormal behaviour of the aircraft during stall.	х	х		
081.08.01.00	CL augmentation				
081.08.01.01	Trailing edge flaps and the reasons for use in take-off and landing:	х	х		
	(a) influence on CL - α -graph:	x	x		
	(b) different types of flaps:	x	x		
	(c) flap asymmetry:	x	x		
	(d) influence on pitch movement	x	x		
	Leading edge devices and the reasons for use in take-off and	~	~		
081.08.01.03	landing	X	Х		
081.09.01.00	The boundary layer				
081.09.01.01	Different types:	Х	Х		
	(a) laminar;	Х	Х		
	(b) turbulent.	Х	Х		
081.10.00.00	Special circumstances				
081.10.00.01	Ice and other contamination:	Х	Х		
	(a) ice in stagnation point;	Х	Х		
	(b) ice on the surface (frost, snow and clear ice);	Х	Х		
	(c) rain;	Х	Х		
	(d) contamination of the leading edge;	Х	Х		
	(e) effects on stall;	Х	Х		
	(f) effects on loss of controllability;	Х	Х		
	(g) effects on control surface moment;	Х	Х		
	(h) influence on high lift devices during takeoff, landing and low speeds.	х	х		
081 11 00 00	Stability				
081 11 01 00	Condition of equilibrium in steady horizontal flight				
081 11 01 01	Precondition for static stability	x	x		
081 11 01 02		x	x		
55111101.02	(a) lift and weight	x	x		
	(b) drag and thrust	x	x		
081 12 00 00	Methods of achieving balance		~	1	
081 12 01 01	Wing and empennage (tail and canard)	x	х	1	
081.12.01.02	Control surfaces	x	x	1	
081.12.01.03	Ballast or weight trim	x	x	1	
	Statio and dynamic longitudinal stability	-	-		

081.13.01.01	Basics and definitions:	х	х		
	(a) static stability, positive, neutral and negative;	х	Х		
	(b) precondition for dynamic stability;	х	Х		
	(c) dynamic stability, positive, neutral and negative.	х	Х		
081.13.01.02	Location of centre of gravity:	х	Х		
	(a) aft limit and minimum stability margin;	х	Х		
	(b) forward position;	х	Х		
	(c) effects on static and dynamic stability.	х	Х		
081.14.00.00	Dynamic lateral or directional stability				
081.14.01.01	Spiral dive and corrective actions	х	Х		
081.15.00.00	Control				
081.15.01.00	General				
081.15.01.01	Basics, the three planes and three axis	х	Х		
081.15.01.02	Angle of attack change	х	Х		
081.16.01.00	Pitch control				
081.16.01.01	Elevator	х	Х		
081.16.01.02	Downwash effects	х	Х		
081.16.01.03	Location of centre of gravity	х	Х		
081.17.01.00	Yaw control				
081.17.01.01	Pedal or rudder	х	Х		
081.17.02.00	Roll control				
081.17.02.01	Ailerons: function in different phases of flight	х	х		
081.17.02.02	Adverse vaw	X	X		
081.17.02.03	Means to avoid adverse vaw:	X	X		
	(a) frise ailerons:	X	X		
	(b) differential ailerons deflection.	X	X		
081 18 01 00	Means to reduce control forces				
081.18.00.01	Aerodynamic balance:	х	х		
	(a) balance tab and anti-balance tab:	X	X		
	(b) servo tab.	X	X		
081 19 01 00	Mass balance				
081 19 00 00	Reasons to balance: means	х	х		
081 20 01 00	Trimming				
081 20 01 01	Reasons to trim	х	х		
081 20 01 02	Trim tabs	x	x		
081 21 00 00	Limitations				
081 21 01 00	Operating limitations				
081 21 01 01	Flutter	x	x		
081,21 01 02	Vfe	x	x	1	
081 21 01 03	Vno. Vne	X	X		
081 22 01 00	Manoeuvring envelope	~	~		
081 22 01 01	Manoeuvring load diagram:	x	x		
001.22.01.01	(a) load factor:	x	x		
	(b) accelerated stall speed:	x	x		
	(c) Va:	x	x		
	(d) manoeuvring limit load factor or certification category	X	X	1	
081 22 01 02	Contribution of mass	x	X		
081 23 01 00	Gust envelope		~		
081 23 01 01	Gust load diagram	Y	Y		
081 23 01 02	Factors contributing to gust loads	× ×	× ×		
081 24 00 00	Propellers	^	~		
081 24 01 00	Conversion of engine torque to thrust				
081 24 01 01	Meaning of nitch	Y	Y		
001.24.01.01		^	^		

081.24.01.02	Blade twist	х	х		
081.24.01.03	Effects of ice on propeller	х	х		
081.25.01.00	Engine failure or engine stop				
081.25.01.01	Windmilling drag	х	х		
081.26.01.00	Moments due to propeller operation				
081.26.01.01	Torque reaction	х	х		
081 26 01 02	Asymmetric slipstream effect	х	х		
081 26 01 03	Asymmetric blade effect	x	X		
081 27 00 00	Flight mechanics	~			
081 27 01 00	Forces acting on an aeroplane				
081 27 01 01	Straight horizontal steady flight	×	v		
081 27 01 02	Straight steady climb	×	x		
081 27 01 03	Straight steady descent	x	x x		
081 27 01 04	Straight steady descent	×	× ×		
081.27.01.04	Steady coordinated turn:	~ V	×		
001.27.01.05	(a) bank andle:	^ V	^ V		
	(a) Dalik aligie,	^ V	A V		
	(b) Idad factor,	X	X		
	(d) rote one turn	X	X		
	(0) Tale one turn.	X	X		
	(a) The almosphere and memalional Standard			х	х
	(h) density:			x	Y
	(c) influence of pressure and temperature on density			×	×
	(c) Initiative of pressure and temperature of density.			~ 	^ V
	(b) Newton's third law: action and reaction			~ 	^ V
	(a) steady airflow and unsteady airflow:			^ V	^ V
	(a) Steady allow and unsteady allow,			^ V	×
	(b) Definition sequation,			~	X
	(c) static pressure, dynamic pressure, total pressure and stagnation point:			х	х
	(d) TAS and IAS:			х	х
	(e) two-dimensional airflow and three-dimensional airflow.			x	x
	(f) viscosity and boundary layer			x	x
	(a) aerofoil section:			x	x
	(b) chord line thickness and thickness to chord ratio of a			~	X
	section;			х	х
	(c) camber line and camber;			х	х
	(d) symmetrical and asymmetrical aerofoils sections.			х	х
	(a) angle of attack;			х	х
	(b) pressure distribution;			х	х
	(c) lift and lift coefficient			х	х
	(d) relation lift coefficient: angle of attack;			х	х
	(e) profile drag and drag coefficient;			х	х
	(f) relation drag coefficient: angle of attack;			х	х
	(g) resulting force, centre of pressure and pitching			×	v
	moment.			^	^
	(a) boundary layer and reasons for stalling;			Х	Х
	(b) variation of lift and drag as a function of angle of attack;			х	x
	(c) displacement of the centre of pressure and pitching moment.			х	х
	(a) ice contamination;			Х	Х
	(b) ice on the surface (frost, snow and clear ice).			Х	х
	(a) planform, rectangular and tapered wings;			Х	х
	(b) wing twist.			Х	х

(a) span wise flow on upper and lower surface;	х	х
(b) tip vortices;	х	Х
(c) span-wise lift distribution.	х	Х
(a) components of a fuselage;	х	Х
(b) parasite drag;	Х	Х
(c) variation with speed.	х	Х
(a) speed of sound;	Х	Х
(b) subsonic, high subsonic and supersonic flows.	х	х
(a) compressibility and shock waves;	Х	Х
(b) the reasons for their formation at upstream high subsonic airflow;	х	х
(c) their effect on lift and drag.	х	Х
(a) autogyro;	х	Х
(b) helicopter.	х	Х
(a) general lay-out, fuselage, engine and gearbox;	х	Х
(b) tail rotor, fenestron and NOTAR;	х	Х
(c) engines (reciprocating and turbo shaft engines);	х	Х
(d) power transmission;	х	Х
(e) rotor shaft axis, rotor hub and rotor blades;	х	Х
(f) rotor disc and rotor disc area;	х	Х
(g) teetering rotor (two blades) and rotors with more than two blades;	х	х
(h) skids and wheels;	х	Х
(i) helicopter axes and fuselage centre line;	х	х
(j) roll axis, pitch axis and normal or yaw axis;	х	х
(k) gross mass, gross weight and disc loading.	х	Х
(a) circumferential velocity of the blade sections;	х	х
(b) induced airflow, through the disc and downstream;	х	х
(c) downward fuselage drag;	х	х
(d) equilibrium of rotor thrust, weight and fuselage drag;	х	Х
(e) rotor disc induced power;	х	Х
(f) relative airflow to the blade;	х	Х
(g) pitch angle and angle of attack of a blade section;	х	Х
(h) lift and profile drag on the blade element;	х	Х
(i) resulting lift and thrust on the blade and rotor thrust;	х	х
(j) collective pitch angle changes and necessity of blade feathering;	х	х
(k) required total main rotor-torque and rotor-power;	х	Х
(I) influence of the air density.	х	Х
(a) force of tail rotor as a function of main rotor-torque;	х	х
(b) anti-torque rotor power;	х	х
(c) necessity of blade feathering of tail rotor blades and yaw pedals.	х	х
(a) total power required and power available;	х	х
(b) maximum hover altitude as a function of pressure altitude and OAT.	х	х
(a) climb velocity VC, induced and relative velocity and angle of attack;	x	х
 (b) collective pitch angle and blade feathering.	х	Х
 (a) induced power, climb power and profile power;		
 (b) total main rotor power and main rotor torque;	Х	Х
 (c) tail rotor power;	х	Х
(d) total power requirement in vertical flight.	х	х

(a) assumption of uniform inflow distribution on rotor disc;	х	х
(b) advancing blade (90°) and retreating blade (270°);	Х	х
(c) airflow velocity relative to the blade sections, area of reverse flow;	х	х
(d) lift on the advancing and retreating blades at constant pitch angles:	х	х
(e) necessity of cyclic pitch changes;	х	х
(f) compressibility effects on the advancing blade tip and speed limitations;	x	x
(g) high angle of attack on the retreating blade, blade stall and speed limitations;	x	x
(h) thrust on rotor disc and tilt of thrust vector;	Х	х
(i) vertical component of the thrust vector and gross weight equilibrium;	х	х
(j) horizontal component of the thrust vector and drag equilibrium.	x	x
(a) thrust reversal and increase in rotor thrust;	Х	х
(b) increase of rotor RPM on non governed rotor.	Х	х
 (a) induced power as a function of helicopter speed;	Х	х
 (b) rotor profile power as a function of helicopter speed;	х	х
(c) fuselage drag and parasite power as a function of forward speed;	x	x
(d) tail rotor power and power ancillary equipment;	Х	х
(e) total power requirement as a function of forward speed;	x	x
(f) influence of helicopter mass, air density and drag of additional external equipment;	x	x
(g) translational lift and influence on power required.	Х	х
(a) airflow through the rotor, low and moderate descent speeds;	х	х
(b) vortex ring state, settling with power and consequences.	х	х
(a) collective lever position after failure;	Х	х
(b) up flow through the rotor, auto-rotation and anti- autorotation rings;	x	x
(c) tail rotor thrust and yaw control;	Х	х
(d) control of rotor RPM with collective lever;	х	х
(e) landing after increase of rotor thrust by pulling collective and reduction in vertical speed.	x	x
(a) descent speed and up flow through the disc;	Х	х
(b) the flare, increase in rotor thrust, reduction of vertical speed and ground speed.	x	х
(a) turning;	х	Х
 (b) flare;	х	х
(c) autorotative landing;	Х	х
(d) height or velocity avoidance graph and dead man's curve.	x	x
 (a) centrifugal force on the blade and attachments;	х	х
 (b) limits of rotor RPM;	х	х
(c) lift on the blade and bending stresses on a rigid attachment;	x	x
(d) the flapping hinge of the articulated rotor and flapping hinge offset;	x	x
(e) the flapping of the hinge less rotor and flexible element.	x	x

	(a) lift and centrifugal force in hover and blade weight	x	х
	negligible	 	
	(b) flapping, tip path plane and disc area.	X	X
	(a) aerodynamic forces on the advancing and retreating blades without cyclic feathering;	х	х
	(b) periodic forces and stresses, fatigue and flapping hinge:	х	х
	(c) phase lag between the force and the flapping angle (about 90°);	х	х
	(d) flapping motion of the hinged blades and tilting of the cone and flap back of rotor:	х	х
	(e) rotor disc attitude and thrust vector tilt.	х	х
	(a) necessity of forward rotor disc tilt and thrust vector tilt:	х	х
	(b) flapping and tip path plane, virtual rotation axis or no flapping axis and plane of rotation;	x	x
	(c) shaft axis and hub plane;	Х	х
	(d) cyclic pitch change (feathering) and rotor thrust vector tilt:	х	х
	(e) collective pitch change, collective lever, swash plate, pitch link and pitch horn;	x	x
	(f) cyclic stick, rotating swash plate and pitch link movement and phase angle.	х	х
	(a) forces due to the Coriolis effect because of the flapping;	Х	Х
	(b) alternating stresses and the need of the drag or lag hinge.	Х	х
	(a) the drag hinge in the fully articulated rotor;	Х	х
	(b) the lag flexure in the hinge less rotor;	Х	Х
	(c) drag dampers.	х	х
	(a) blade lag motion and movement of the centre of gravity of the blades and the rotor;	x	х
_	(b) oscillating force on the fuselage;	Х	х
_	(c) fuselage, undercarriage and resonance.	Х	х
	(a) three hinges arrangement;	Х	х
_	(b) bearings and elastomeric hinges.	Х	х
-	(a) low rotor RPM and effect of adverse wind;	х	х
_	(b) minimising the danger;	Х	х
	(c) droop stops.	х	х
	(a) origins of the vibrations: in plane and vertical;	Х	х
	(b) blade tracking and balancing.	Х	х
	(a) two-blades tail rotors with teetering hinge:	Х	х
	(b) rotors with more than two blades:	х	х
-	(c) feathering bearings and flapping hinges;	х	х
	(d) dangers to people and to the tail rotor, rotor height and safety.	х	х
	(a) induced airflow and tail rotor thrust:	х	Х
	(b) thrust control by feathering, tail rotor drift and roll:	х	х
	(c) effect of tail rotor failure and vortex ring.	X	X
	(a) forces and equilibrium conditions:	X	X
	(b) helicopter pitching moment and pitch angle:	х	х
	(c) helicopter rolling moment and roll angle.	X	X
	(a) forces and equilibrium conditions:	X	X
	(b) helicopter moments and angles:	X	X
	(c) effect of speed on fuselage attitude.	x	X
	(a) fully articulated rotor:	X	X
	(b) hinge less rotor;	х	х

(C)	teetering rotor.	х	х
(a)	power available;	х	Х
(b)	effects of density altitude.	х	х
(a)	power available;	х	Х
(b)	effects of ambient pressure and temperature.	х	Х
(a)	power required and power available;	х	Х
(b)	OGE and IGE maximum hover height;	х	Х
(C)	influence of AUM, pressure, temperature and density.	х	Х
(a)	maximum speed;	х	Х
(b)	maximum rate of climb speed;	х	х
(C)	maximum angle of climb speed;	х	х
(d)	range and endurance;	х	Х
(e)	influence of AUM, pressure, temperature and density.	х	Х
(a)	load factor;	х	Х
(b)	bank angle and number of g's;	х	х
(C)	manoeuvring limit load factor.	х	х
(a)	operating with limited power;	х	х
(b)	over pitch and over torque.	х	х