Edinburgh ACP - IFP Design Report

Version 4.0 - August 2018

Edinburgh ACP - IFP Design Report

Version 4.0 - August 2018

Prepared by:

Team Leader Airspace Design
Procedure Designer
Procedure Designer

Revision History:

Version	Date	Changes
1.0	13 July 2016	Initial conceptual designs
2.0	23 December 2016	Detailed SID designs for flight validation
2.1	05 April 2017	Detailed Arrival and Approach designs for flight validation
3.0	31 August 2017	Final designs for CAA approval
4.0	03 August 2018	Re-submission following numerous design changes

©2018 NATS (Services) Ltd. ("NATS"). This report [correspondence] must not be disclosed to third parties or copied or reproduced in whole or in part without NATS' prior written consent. Any amendment, variation or distribution of this correspondence must be authorised in advance by NATS.

The circulation of NATS Protectively Marked information outside NATS is restricted. Please do not redistribute this information without first obtaining NATS' permission. Every effort should be made to prevent any unauthorised access to this information and to dispose of it securely when no longer required.

NATS is not a public body and therefore has no duty under FOIA and EIR to release information. NATS does however appreciate that other organisations that receive NATS information could be subject to FOIA and EIR. With this is mind please do not release any NATS protectively marked information without prior consent from the author of the information as exemptions could apply.

Table of Contents

1. Introduction 5
2. Scope 6
3. General Design Methodology 9
3.1. Assumptions 9
3.2. Obstacle Data 9
3.3. Other Data 9
3.4. Obstacle Assessment 10
3.5. Maximum True Airspeed 10
3.6. DME/DME RNAV 10
3.7. Waypoint Names and Airways 12
3.8. Flight Validation 13
3.9. Folder Layout 13
4. SIDs 14
4.1. Design Rationale 14
4.2. EVTOL 1C 18
4.3. ARLER 1C 19
4.4. MAVIX 1C 21
4.5. LIKLA 1C 23
4.6. GRICE 4C 25
4.7. VOSNE 1C 27
4.8. EMJEE 1D 29
4.9. GRICE 5D 31
4.10. VOSNE1D 33
4.11. KRAGY 1D 35
4.12. Omni Directional SIDs 38
5. STARs 39
5.1. Design Rationale 39
5.2. BLACA 1E 40
5.3. BLACA 1F 41
5.4. ESKDO 1E 42
5.5. HAVEN 1E 43
5.6. PTH 1E 44
6. Approach Transitions 46
6.1. Design Rationale 46
6.2. EDIBO 1C 48
6.3. EDIBO 1D 49
7. Instrument Approach Procedures 51
7.1. Design Rationale 51
7.2. Minimum Sector Altitudes 53
7.3. Visual Manoeuvring (Circling) 55
7.4. ILS/DME RWY 06 56
7.5. LOC/DME RWY 06 58
7.6. RNAV(GNSS) RWY 06 60
7.7. ILS/DME RWY 24 62
7.8. LOC/DME RWY 24 64
7.9. RNAV(GNSS) RWY 24 66
8. Holds 68
8.1. RNAV1 EDIBO 68
8.2. RNAV1 STIRA 69
8.3. RNP-APCH EDN 70
8.4. RNP-APCH UW 71
8.5. NDB(L) EDN 72
8.6. NDB(L) UW 73
Appendix A - Navigation Infrastructure Assessment 75
Appendix B - Close-In Obstacles 83
Appendix C - Draft Charts and Coding Tables 85
Appendix D - APD Validation Reports 135

1. Introduction

Edinburgh Airport wishes to accommodate future growth in traffic within the ATC operation. Part of this desire is achieved by making approach and departure procedures as efficient as possible through redesign of SIDs, transitions and approaches (ILS and RNAV).

This report contains details of the procedure that have been revised or designed as part of this project. These detailed designs include draft charts, RNAV coding tables, and obstacle protection for all of the procedures.

2. Scope

The NATS Design brief for this stage of the project was to fully complete design work on the agreed procedures based on the outcome of the ACP consultation and the flight validation activities. This includes:
> Documenting final nominal tracks
> Obstacle protection assurance
> Draft chart and coding table
> Design rationale
The following procedures have been developed:

Package:	RNAV1 SIDs and Omnidirectional SIDs
Designer:	
Checker:	
AutoCAD File:	5248 - EGPH - UTM84-30N dwg
Procedures:	>10 RNAV1 SIDs
	$>$ EVTOL 1C - RWY 24 towards TLA
	$>$ ARLER 1C - RWY 24 towards TLA
	$>$ MAVIX 1C - RWY 24 towards GOSAM
	$>$ LIKLA 1C- RWY 24 towards GOW
	$>$ GRICE 4C - RWY 24 towards GRICE
	$>$ VOSNE 1C - RWY 24 towards HAVEN
	$>$ EMJEE 1D - RWY 06 towards GOSAM / GOW
	$>$ GRICE 5D - RWY 06 towards GRICE
	$>$ VOSNE 1D - RWY 06 towards HAVEN
	$>$ KRAGY 1D - RWY 06 towards TLA
	2 Omnidirectional SIDs - RWY 06 and RWY 24

Package:	RNAV5 STARs and Holds
Designer:	
Checker:	
AutoCAD File:	5248 - EGPH - UTM84-30N
Procedures:	>5 RNAV5 STARs
	$>$ BLACA 1E - BLACA to EDIBO via TUNSO
	$>$ BLACA 1F - BLACA to EDIBO via GIRVA
	$>$ ESKDO 1E - ESKDO to EDIBO
	$>$ HAVEN 1E - HAVEN to EDIBO
	$>$ PTH 1E - PTH to STIRA
	2 RNAV1 Holds
	$>$ RNAV1 EDIBO
	$>$ RNAV1 STIRA
	2 RNP-APCH Holds
	$>$ RNP-APCH EDN
	$>$ RNP-APCH UW

Package:	RNAV1 Approach Transitions and RNAV(GNSS) Approaches
Designer:	
Checker:	
AutoCAD File:	5248 - EGPH - UTM84-30N dwg
Procedures:	> 2 RNAV1 Approach Transitions > EDIBO 1C - EDIBO to FIRTH for RWY 24 > EDIBO 1D - EDIBO to FAULD for RWY 06 > 2 Instrument Approach Procedures > RNAV(GNSS) with LNAV and LNAV/VNAV to RWY 06 > RNAV(GNSS) with LNAV and LNAV/VNAV to RWY 24 > 3 Minimum Sector Altitudes > MSA ARP > MSA NDB(L) EDN > MSA NDB(L) UW > 2 Visual Manoeuvring (Circling) > VMC - Total Area > VMC - North of RWY 06/24

Package:	Conventional Approaches and Holds
Designer:	
Checker:	
AutoCAD File:	5248 -EGPH-UTM84-30N dwg
Procedures:	>4 Instrument Approach Procedures
	$>$ ILS/DME CAT I \& II to RWY 06
	$>$ LOC/DME to RWY 06
	$>$ ILS/DME CAT I \& II to RWY 24
	$>$ LOC/DME to RWY 24
	>2 Conventional Holds
	$>$ NDB(L) EDN
	$>$ NDB(L) UW

3. General Design Methodology

The following criteria have been adhered to as closely as possible:
1 ICAO Doc 8168 PANS-OPS - Volume II - 6th Edition, amendment 7
2 UK CAA policy where it supersedes ICAO (including but not limited to CAP 778)

3.1. Assumptions

The following assumptions have been made:
1 All runways, runway data, published navigation aids, and runway lighting will be 'fit for purpose'.

2 Survey information received is correct.
3 The airspace requirements for the procedures have been met and an assessment of the interaction of the revised procedures with the current airspace will be carried out by NATS.

4 All procedures and waypoints have been submitted with their final titles / names ready for publication.

3.2. Obstacle Data

The following obstacle data sources were used for obstacle clearance calculations:
> Edinburgh CAP232 Survey from February 2017
> UKMOD Digital Vertical Obstruction File (DVOF) data as of February 2018
> SRTM digital elevation data (DEM)
> OSVM terrain spot height data from November 2015
For analysis purposes an obstacle tolerance of 20 m has been used for all CAP232 survey data. An obstacle tolerance of 50 m has been used for all DVOF data and OSVM data. Obstacle tolerance for the DEM data varies between 67 m and 707 m based on the range from the EGPH ARP.

3.3. Other Data

3.3.1. Magnetic Variation

Magnetic variation for Edinburgh was provided for December 2019 by the NATS Cartography department.

3.3.2. Radio Navigation Aids and Waypoints

Coordinates for existing radio navigation aids and waypoints were obtained from an AIXM snapshot of the UK AIP. This contains high-resolution coordinates for most points in the UK. The AIXM snapshot is saved in the "Other" folder along with the AIP snapshot.

En route waypoints are currently published in section ENR 4.4 of the UK AIP to 0 decimal places of accuracy. Where these waypoints have been used on the IFPs in this project the high-resolution (2 decimal place) coordinates have been used. This will result in the same waypoints being published to different levels of precision in different parts of the AIP. However this situation already exists at various airports with RNAV SIDs and STARs and is not known to have caused any problems.

3.3.3. Aerodrome Details

Information specific to the aerodrome was obtained from the UK AIP AD 2.EGPH.

3.4. Obstacle Assessment

The tallest obstacle in the dataset is Ordnance Survey Vector Map spot height OSVM13451 at the peak of Ben Lawers with an elevation of 1214m. Adding the standard Minimum Obstacle Clearance (MOC) of 300 m results in an obstacle safe altitude of 1514 m or 4967 ft . If mountainous terrain were considered and the MOC was increased to 600 m the obstacle safe altitude would increase to 1814 m or 5951 ft . Specific obstacle analysis has therefore not been conducted for any procedures that remain entirely above 6000 ft .

3.5. Maximum True Airspeed

TAS is a factor in determining the size of obstacle protection areas and MSD requirements. In making calculations for these parameters, it is assumed that aircraft on SIDs will be continuously climbing along the SID track and that aircraft on STARs will be continuously descending along the STAR track. Given the length of some SIDs and STARs and the gradients employed, the PANSOPS formula for TAS resulted in large TAS figures which proved problematic for the designs.

For all designs, the TAS has been limited to a maximum of 480kts. This is approximately equivalent to Mach 0.83 at $31,000 \mathrm{ft}$. This is the highest value given in Table II-4-1-App-A-2 of PANS-OPS. Modern airliners are now capable of cruising at Mach 0.85 which could result in a TAS closer to 500 kts . However 480 kts was considered to be adequate for this project.

3.6. DME/DME RNAV

The RNAV1 navigation specification can be supported by GNSS, DME/DME, and DME/DME/IRU navigation sensors. This project includes RNAV1 SIDs, RNAV1 Holds, and RNAV1 Approach Transitions. These procedures must therefore support aircraft using any of these navigation sensors.

The RNAV5 navigation specification can be supported by GNSS and DME/DME navigation sensors. This project includes RNAV5 STARs. These procedures must therefore support aircraft using either of these navigation sensors.

Aircraft flying the SIDs using DME/DME RNAV will be required to have INS/IRU with an automatic runway update. There are no PANS-OPS criteria for the calculation of fix tolerances using INS/IRU - it is assumed that the fix tolerance area will be less than or equal to the GNSS fix tolerance area.

The "PLAS Navigation Infrastructure Assessment Report" provides a detailed analysis of the ground based navigation infrastructure coverage within the PLAS project area. Appendix C of the PLAS report - covering the Glasgow, Edinburgh, and Prestwick airports - is included as Appendix A to this document.

Figure 1 - DME/DME Assessment at 3000ft
DME/DME navigation is required above 3000ft. The image above shows that there is adequate DME/DME coverage throughout the area covered by the Edinburgh ACP. There are some areas shown in yellow which have limited DME/DME redundancy. This means that there is more than one DME/DME pair available but all of the available pairs share a common DME. In the case of the yellow area surrounding Edinburgh airport, the critical DME is GOW. All SIDs and Arrival Transitions therefore have a note that the procedure is not available if the GOW DME is unserviceable.

Figure 2 - DME/DME Assessment at 5000ft
At or below 6000ft the RNAV1 fix tolerance area for DME/DME RNAV with two DME update stations is smaller than the fix tolerance area for GNSS RNAV. The RNAV1 fix tolerance area for DME/DME RNAV with more than two DME update stations is smaller than the fix tolerance area for GNSS RNAV at all altitudes.

The figure above shows that there is fully redundant DME/DME coverage at 5000ft throughout the area covered by the Edinburgh ACP. Fully redundant DME/DME coverage implies that there are at least four DMEs so even if any single DME was unserviceable there would still be more than two DME stations available.

RNAV1 fix tolerance areas have therefore been constructed for GNSS RNAV as this is the most adverse.

At all altitudes the RNAV5 fix tolerance area for DME/DME RNAV is larger than the fix tolerance area for GNSS RNAV. RNAV5 fix tolerance areas have therefore been constructed for DME/DME RNAV as this is the most adverse.

3.7. Waypoint Names and Airways

ICAO approved 5 Letter Name Codes (5LNCs) have been requested from the ICARD system. New airways linking the end of the SIDs to the existing en route network have been issued with names by Tihomir Todorov at Eurocontrol.

All waypoints used in this project and proposed airways have been documented in the "WGS84 Spreadsheet.". This can be found in the "RNAV" folder.

3.8. Flight Validation

Eleven flight validation sessions have been conducted on four aircraft types. These covered the RNAV1 SIDs, RNAV1 Approach Transitions, RNAV(GNSS) Instrument Approaches, and ILS Instrument Approaches. The results of the flight validation activities are documented in the "Edinburgh ACP Flight Validation Report v2.0 \quad pdf".

3.9. Folder Layout

This explains the location of files in the zipped version of this report.
> Calculations Calculation sheets for each procedure
> Data Project database and other data files
> Draft charts NATS Design draft charts
> Drawings Project AutoCAD DWG files
> Other Miscellaneous files, including an AIP snapshot
> RNAV Data pertaining to RNAV calculations and Coding Tables

4. SIDs

4.1. Design Rationale

4.1.1. Routes

The route designs and particular waypoint placement have been developed from feedback received from stakeholders and the requirement to comply with design criteria.

4.1.2. \quad Procedure Naming

During this project the names for each SID have developed in such a way that multiple names are attributable to each SID, with each stakeholder assigning an appropriate name for their needs. Below is a decode table for each route:

Runway	Development Name	Consultation Name	Initial Validation Name	Initial Submission Name	Final Submission Name
24	24 S	A6	Route A	ACORN 1C	EVTOL 1C
24	New	A3	New	ARBOR 1C	ARLER 1C
24	24 SE	B5	Route B1	BRIER 1C	MAVIX 1C
24	24 SW	B2	Route B2	BEECH 1C	LIKLA 1C
24	24 N	C5	Route C	CEDAR 1C	GRICE 4C
24	24 E	D0	Route D	DOWEL 1C	VOSNE 1C
06	06 SW	E7	Route E	ELDER 1D	EMJEE 1D
06	06 N	F2A	Route F	FLORA 1D	GRICE 5D
06	06 E	G5	Route G	DOWEL 1D	VOSNE 1D
06	$06 ~ S ~$	H2S	Route H1	HEATH 1D	KRAGY 1D

4.1.3. RWY 06 Initial Leg

In order to avoid overflying Cramond and as the current conventional SIDs do, the RNAV SIDs commence with a left turn following a climb to 500 ft aal.

To that end, initial design concepts commenced with a CA leg to 500 ft aal followed by a CF to the next WP, which produced a track which was to the north of RWY track. Alone, this configuration would not prevent turns occurring before DER (high performing aircraft might achieve 500ft aal before reaching the DER) and though compliant with PANS-OPS, CAA do not wish this to occur. Therefore, following discussion with CAA and flight simulator validation, the departures now commence with a CF to a FO WP positioned at DER before turning left to the next WP.

4.1.4. Speed Restrictions

Though not required by PANS-OPS, at the request of CAA, in the case of a SID which requires a WP speed restriction (which occurs here in the initial portions of the departures to satisfy PANSOPS requirements for minimum distances between WPs) a speed restriction of 250KIAS has been placed on the subsequent WP (and then no restrictions at further WP).

4.1.5. Turn Following DF

A number of SIDs feature DF path terminators. The nature of this path terminator means that aircraft may approach the WP from a number of directions, especially when preceded by a large turn. This may result in the possibility of requiring either a left or a right turn onto the next leg, in which case no turn direction is specified on the coding table. Where the preceding turn is small then it is most likely that the resultant next turn is able to be defined but for consistency with the other SIDs no turn has been specified here either.

4.1.6. Depiction of Nominal Tracks

In order to represent typical traffic, the turn radius used in depicting the nominal SID tracks is based on aircraft climbing at 10\%. Distances used to calculate altitudes at each turn are based on point to point distance between each WP except in the case of FO WPs where the distance to next WP following the FO is measured along the nominal turn, whose radius is calculated based on the altitude achieved at the FO WP. Bank angles are as per instructed in UK CAA design criteria.

4.1.7. Consultation Swathes

For the routes with fly-over waypoints there will be a degree of dispersion around the turn. In order to model this dispersion, historical radar data was used to determine the typical groundspeed and altitude at the fly-over waypoints. Radar data from 01 December 2015 to 31 May 2016 was analysed.

For each fly-over waypoint, all radar returns for departures from the appropriate runway within 0.25 NM of the waypoint location were included. From these data samples, the $5^{\text {th }}$ percentile, $50^{\text {th }}$ percentile, and $95^{\text {th }}$ percentile values for groundspeed and altitude were determined.

Each groundspeed was then used to calculate a turn rate and turn radius using the equations from PANS-OPS. If the 95% groundspeed was greater than 220kts then the true airspeed for an aircraft flying at 220KIAS at the 95% altitude was calculated and the lower of these two speeds was used. If the calculated turn rate was greater than $3^{\circ} / \mathrm{s}$ then a turn rate of $3^{\circ} / \mathrm{s}$ was used to calculate the turn radius.

The 50% turn radius was then used to draw an average flight path from the fly-over waypoint until it rolled out on a tangential track to the DF waypoint. The 5% and 95% turn radius was used to draw the inner and outer boundaries of the expected traffic swathe. The average flight paths and swathe boundaries were supplied to EAL for use in the consultation documents and to ERCD for noise analysis.

4.1.8. Climb Gradients

In calculating various parameters for which climb gradient is a factor, two methods have been employed.

4.1.8.1. Charts and Obstacle Assessment

For charted gradients and for obstacle clearance calculations the gradients employed have, as per the design criteria, assumed that aircraft are 5 m above DER elevation, at the DER.

Some SIDs require level restrictions to be expressed as flight levels which means variations in pressure could mean aircraft having to climb to higher altitudes than on a standard pressure day. To account for this eventuality, in the case that the charted "ATC" gradient is predicated on a "flight level" restriction, the calculation for gradient has added 1000 ft to the equivalent standard pressure day flight level. E.g. "FL090" will assume an altitude of 10,000ft in the gradient calculation.

4.1.8.2. Textual Report

To reflect observed aircraft behaviour at the aerodrome, for calculating gradients required to reach WPs, it has been assumed that at the DER aircraft will be 500 ft above it. Additionally, it has been assumed that rather than aiming to reach the lower limit of a level restriction, a constant gradient will be taken to reach the highest cleared level restriction on the route.

Gradient calculations have assumed climb to an altitude but some level restrictions are depicted as flight levels meaning that the calculated gradient is applicable only in standard atmospheric conditions. Variations in pressure about the standard value will result in slight variations in the gradients declared in this report.

4.1.9. Initial Turns

CAP778 prohibits turns below 500 ft AAL. To prevent this occurring, where required, an initial CA leg to 500 ft AAL is specified in the coding table and a warning placed on the chart.

4.1.10. SIDs and Link Routes

In some instances, to design a SID such that it connects with the en route network would make it undesirably long. Some of the SIDs will terminate at a point at which a 'link route' will provide connectivity to the network.

4.1.11. WP Spacing

The minimum distance between waypoints in an RNAV procedure is a function of:
> True airspeed
> Magnitude of turn
> Aircraft bank angle
> Altitude
> Type of waypoint (fly-by or fly-over)
For airspace containment this is why there are often speed restrictions imposed at waypoints.
In calculating the minimum distance, a higher altitude will result in a greater true airspeed, a greater aircraft turn radius and therefore a greater minimum distance between waypoints. PANSOPS indicate that nominally, aircraft climb at 7\% and this would be used in calculating altitude at each waypoint. However, it has been observed that Edinburgh traffic includes traffic which is capable of climbing at 15% and above.

Given this performance, the waypoint altitudes have assumed a 20% climb gradient to ensure minimum segment length and obstacle protection areas are adequate to cater for the steepest climbing aircraft and this is the case for both MSD and obstacle protection area calculations.

4.1.12. Protection Areas

There are instances where the first waypoint is located such that the early and late turn point may be located before the altitude specified by the preceding CA leg is achieved. Since it is undesirable to stipulate a procedure climb gradient, for the first turns after the DER, where necessary, the wind spirals for both a turn initiated by the WP (having achieved the CA limit before sequencing the WP) and a turn from the altitude have been considered and the more conservative used to define the obstacle assessment area.

4.1.13. Close-In Obstacles

Close-in obstacles exist for all RWY 24 SIDs and these are listed in Appendix B - Close-in Obstacles.

In producing the table, a check has been carried out to establish whether any DVOF obstacle duplicates a CAP232 survey obstacle. For RWY 24 all DVOF obstacles have been discounted in this way. Any omissions are documented in SID MAVIX 1C 24 RNAV STRAIGHT \quad xlsb.

4.1.14. Level Restrictions

Level restrictions have been placed based on the airspace requirements around the tracks.

4.1.15. Calculations

For each procedure, the following spreadsheets have been used:

4.1.15.1. Straight

This spreadsheet has been used to calculate the minimum segment distances for each leg of the procedure, construct the obstacle protection area, and assess the obstacle clearance for the initial straight-ahead climb. For MSD calculations the altitudes have been calculated based on a point-to-point 20% climb gradient from DER and bank angles are in accordance with CAP778.

4.1.15.2. Turn

This file contains the calculations pertaining to the obstacle protection for the area beyond the initial straight climbing portion of the SID and the turn initiation area (TIA).

4.2. EVTOL 1C

Designer	Checker	AutoCAD File
		5248 - EGPH - UTM84-30N

4.2.1. Procedure Overview

This SID is for non-jet traffic routing to the south via TLA.

4.2.2. Waypoint Placement Rationale

> PHW01 Such that the nominal track avoids Livingston and passes between East Calder and Kirknewton.
> PHS14 Airspace containment.
> EVTOL End of SID.

4.2.3. Speed Restrictions

> PHW01 200KIAS - as requested in initial stakeholder workshops.
> PHS14 250KIAS - as requested by CAA - first WP where a/c can accelerate to 250KIAS.

4.2.4. Procedure Design Gradient

A 4.6% procedure design climb gradient is required to 2200 ft aal in order to clear terrain obstacles to the south of the aerodrome by the required MOC.

4.2.5. Climb Gradients

The following climb gradients are required to meet the required level restrictions. The gradients are calculated using point to point distances between WPs.

DER	PHW01	PHS14 +4000ft	EVTOL 6000ft
	5.25%		

4.2.6. Procedure Level Restrictions

> PHS14 At or above 4000alt - to ensure airspace containment into CTA-4.
> EVTOL At 6000alt - as requested by PC.

4.2.7. Airspace Containment

The level restrictions guarantee that aircraft will remain within controlled airspace for the entire procedure.

4.2.8. Non-Compliances

None

4.2.9. Additional Comments

From EVTOL aircraft route to TLA VOR via Z509.

4.3. ARLER 1C

Designer	Checker	AutoCAD File
		5248 - EGPH - UTM84-30N

4.3.1. Procedure Overview

This SID is an RNAV replication of the current TLA 6C SID from RWY24, based on the existing SID instruction. To this end the FO turn at PHW24 best replicates the instruction "...at I-TH D7 turn left onto TLA VOR R345 to TLA VOR..."

4.3.2. Waypoint Placement Rationale

> PHW24 Placed such that departure tracks overhead UW NDB. This FO WP is located at ITH D7 as per the current conventional turn instruction.
> PHSO8 Airspace containment.
> ARLER End of SID.

4.3.3. Speed Restrictions

> PHW24 220KIAS - allowing turn to PHS08, whose position is predicated on the boundary with CTA-4.
> PHS08 250KIAS - to accommodate the turn from PHW24.

4.3.4. Procedure Design Gradient

Standard 3.3% procedure design climb gradient is required.

4.3.5. Climb Gradients

The following climb gradients are required to meet the required level restrictions. The gradients are calculated using point to point distances between WPs.

DER	PHW24 +2500	PHS08 +4000ft	ARLER 6000ft	
	4.73%	3.96%		9.18%

4.3.6. Procedure Level Restrictions

> PHW24 At or above 2500alt - to ensure airspace containment into CTA-1. Though the base of CTA-1 is 2500 , PHW24 is 2.5 NM from the boundary which, if climbing at 3.3%, achieves the additional 500ft required to be clear of the base.
> PHS08 At or above 4000alt - to ensure airspace containment into CTA-4.
> ARLER At 6000alt - as requested by PC.

4.3.7. \quad Procedure Coding of Initial Leg

PANS-OPS III-2-5 App states that if a CF is used as the first leg the design shall be validated for inadvertent low altitude banking of aircraft. The proposed design utilised a CA as the first leg, which PANS-OPS offers as an option to alleviate the possibility of inadvertent banking and at the
same time ensures turns are not made before 500aal. At the request of CAA this CA has been removed. The design has not been assessed for the possibility of low altitude aircraft banking.

4.3.8. Airspace Containment

The level restrictions guarantee that aircraft will remain within controlled airspace for the entire procedure.

4.3.9. Non-Compliances

None

4.3.10. Additional Comments

From ARLER aircraft route to TLA VOR via Z507.

4.4. MAVIX 1C

Designer	Checker	AutoCAD File
		5248 - EGPH - UTM84-30N

4.4.1. Procedure Overview

There are two options for this SID, which is intended for jet traffic only, routing to the south and east via GOSAM.

4.4.2. Options

Two options are presented, the choice of which to implement is dependent on decisions made during the Prestwick Centre (PC) ACP. The differences between the two are the choice of level restriction at PHW30 and MAVIX.

4.4.2.1. Option 1

Option 1 is for use if PC proceeds with a change to the Glasgow hold to RULUR. FL100 is systemised safe above the Glasgow inbounds at min stack or below.

4.4.2.2. Option 2

Option 2 is for use if the LANAK hold remains in operation at the time of implementation. 6000 is vertically separated from the LANAK hold but otherwise departures are tactically climbed as today.

4.4.3. Waypoint Placement Rationale

> PHW06 Placed at the intersection of RWY centreline and the track from MAVIX to NDB UW (which is the current GOSAM SID routing).
> PHW28 Airspace containment.
> PHW30 As requested by PC.
> MAVIX End of SID.

4.4.4. Speed Restrictions

> PHW06 220KIAS - to compliment other SIDs whose speed restriction is required for MSD purposes. Without the speed restriction a catch-up situation could occur between departures on another SID and compromise aircraft separation requirements.
> PHW28 250KIAS - as requested by CAA - first WP where a/c can accelerate to 250KIAS.

4.4.5. Procedure Design Gradient

Standard 3.3% procedure design climb gradient is required.

4.4.6. Climb Gradients

The following climb gradients are required to meet the required level restrictions. The gradients are calculated using point to point distances between WPs.

4.4.7. Procedure Level Restrictions

> PHW28 At or above 3000alt - to ensure airspace containment into CTA-1.
> PHW30 Option 1 at or above FL90, Option 2 at 6000alt - as requested by PC.
> MAVIX Option 1 at FL100, Option 2 at 6000alt - as requested by PC.

4.4.8. Airspace Containment

The level restrictions guarantee that aircraft will remain within controlled airspace for the entire procedure.

4.4.9. Non-Compliances

None.

4.4.10. Additional Comments

From MAVIX aircraft can route to GOSAM via Z500.

4.5. LIKLA 1C

Designer	Checker	AutoCAD File
		5248 - EGPH - UTM84-30N

4.5.1. Procedure Overview

This SID is intended for departures to the west via GOW and TRN for jet traffic only.

4.5.2. Options

Two options are presented, the choice of which to implement is dependent on decisions made during the Prestwick Centre (PC) ACP. The differences between the two are the choice of level restriction at PHW31 and LIKLA.

4.5.2.1. Option 1

Option 1 is for use if PC proceeds with a change to the Glasgow hold to RULUR. FL100 is systemised safe above the Glasgow inbounds at min stack or below.

4.5.2.2. Option 2

Option 2 is for use if the LANAK hold remains in operation at the time of implementation. 6000 is vertically separated from the LANAK hold but otherwise departures are tactically climbed as today.

4.5.3. Waypoint Placement Rationale

This route is intended to provide another route to the west to compliment MAVIX 1C.

> PHW10	Placed such that the nominal track of the leg to the north avoids Linlithgow and Broxburn, passing between Uphall and Dechmont.
> PHW27	Airspace containment.
> PHW12	Placed so that the track could turn west, parallel with MAVIX 1C once it was 5NM from MAVIX 1C.
$>$ PHW31	As requested by PC.
> LIKLA	End of SID.

4.5.4. Speed Restrictions

> PHW10 220KIAS - to compliment other SIDs whose speed restriction is required for MSD purposes. Without the speed restriction a catch-up situation could occur between departures on another SID and compromise aircraft separation requirements.
> PHW27 250KIAS - as requested by CAA - first WP where a/c can accelerate to 250KIAS.

4.5.5. Procedure Design Gradient

Standard 3.3\% procedure design climb gradient is required.

4.5.6. Climb Gradients

The following climb gradients are required to meet the required level restrictions. The gradients are calculated using point to point distances between WPs.

Option 1								
DER	PHW10	$\begin{aligned} & \text { PHW27 } \\ & +3000 \end{aligned}$		$\begin{gathered} \text { PHW12 } \\ +4000 \end{gathered}$		$\begin{gathered} \text { PHW31 } \\ + \text { FL90 } \end{gathered}$		$\begin{aligned} & \text { LIKLA } \\ & \text { FL100 } \end{aligned}$
4.02\%			6.09\%		14.59\%		1.98\%	
7.62\%							1.98\%	

| DER | PHW10 | PHW27
 +3000 | PHW12
 +4000 | PHW31 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |

4.5.7. Procedure Level Restrictions

> PHW27 At or above 3000alt - to ensure airspace containment into CTA-1.
> PHW12 At or above 4000alt - to ensure airspace containment into CTA-3 (though the WP is placed 654 m into CTA-3 the required gradient from PHW27 means that crossing the CTA boundary, aircraft will nominally be 3870 ft alt which is 870 ft above the base).
> PHW31 Option 1 at or above FL90, Option 2 at 6000alt - as requested by PC.
> LIKLA Option 1 at FL100, Option 2 6000alt - as requested by PC.

4.5.8. Airspace Containment

Though PHW12 is located beyond the boundary of CTA-3, the gradient required to meet the level restrictions means that aircraft will remain within controlled airspace for the entire procedure.

4.5.9. Non-Compliances

None.

4.5.10. Additional Comments

The minimum altitude at which a turn may commence is 650 ft alt due to required MOC in the TIA. For this reason, an initial CA leg to 650 ft alt is specified in the coding table and noted on the chart.

From LIKLA aircraft can route to GOW or MAC via N537.

4.6. GRICE 4C

Designer	Checker	AutoCAD File
		$5248-$ EGPH - UTM84-30N

4.6.1. Procedure Overview

This SID is for departures of all aircraft types to the north via GRICE.

4.6.2. Waypoint Placement Rationale

> PHW15 This WP is FO and placed at 1NM from DER based on the CAP778 guidance that the turn point shall be no closer to DER than 1NM. This enables the nominal track to overfly the eastern side of Broxburn (which is more industrial than the west), whereas if FB WPs are used the western side of Broxburn is overflown resulting in higher populations being effected.
> PHW26 Placed so that the track to GRICE avoids Blackness.
> PHN19 Airspace containment.
> PHN18 Airspace containment.
> GRICE End of SID.

4.6.3. Speed Restrictions

> PHW26 220KIAS - to accommodate the turn from PHW15.
> PHN19 250KIAS - as requested by CAA - first WP where a/c can accelerate to 250KIAS.

4.6.4. Procedure Design Gradient

Standard 3.3\% procedure design climb gradient is required.

4.6.5. Climb Gradients

The following climb gradients are required to meet the level restrictions.
The path terminator at PHW26 is DF which means that, following the FO WP PHW15, there will be a significant variation in track distance flown (determined by a combination of speed, bank angle and when the turn is initiated by the FMS). If the turn is initiated at the earliest point the distance flown to subsequent WPs is reduced. Since this will provide the most adverse required gradient this shortest track is measured in the calculation; if the turn is initiated later then the gradient will reduce since the aircraft has further distance with which to climb to the required altitude.

4.6.6. Procedure Level Restrictions

> PHN19 At or above 4000alt - to ensure airspace containment into CTA-3.
> PHN18 At or above 4500alt - to ensure airspace containment into TMA-6.
> GRICE At 6000alt - as requested by PC.

4.6.7. \quad Procedure Coding of Initial Leg

The proposed design starts with a CA to 650alt. At the request of the CAA it was investigated as to whether an initial CA leg could be avoided in favour of relying on a level restriction at PHW15. After consideration it is felt that this proposition would be impracticable for this procedure due to the proximity of the first WP to DER. Placing a level restriction here would require publishing a high ATC climb gradient on the chart.

4.6.8. Airspace Containment

The WP level restrictions ensure that aircraft remain in CAS whilst routing to GRICE. The gradient required for the "average" track is lower than that of aircraft turning early but due to the longer track required, gains more altitude than the "early" turn and is higher, at the boundary of CTA-3.

4.6.9. Non-Compliances

None.

4.6.10. Additional Comments

The minimum altitude at which a turn may commence is 650 ft alt due to required MOC in the TIA. For this reason, an initial CA leg to 650ft alt is specified in the coding table and noted on the chart.

PANS-OPS does not give guidance on the WP spacing between a FO and the subsequent DF WP. Assurance for the spacing in this design is derived by ensuring that the straight portion of flight by a nominal (10% climb gradient, 20° angle of bank, 220KIAS) aircraft is longer than the MSD required at PHW26 for the required turn by this nominal.

From GRICE aircraft can route via FOYLE to N560, via P600 Eastbound, or leave CAS to the north.

4.7. VOSNE 1C

Designer	Checker	AutoCAD File
\square		$5248-$ EGPH - UTM84-30N

4.7.1. Procedure Overview

This SID is for jet only departures to the south via HAVEN.

4.7.2. Waypoint Placement Rationale

> PHW15 This WP is FO and placed at 1NM from DER based on the CAP778 guidance that the turn point shall be no closer to DER than 1NM. This enables the nominal track to overfly the eastern side of Broxburn (which is more industrial than the west), whereas if FB WPs are used the western side of Broxburn is overflown resulting in higher populations being effected.
> PHN09 Placed so that the track to PHE50 routes over water.
> PHN21 Placed so that a speed restriction of 250KIAS can be placed.
> PHE33 Placed so that a level restriction can be coded for separation against approaches.
> PHE50 Ensures that the route is 3NM inside the edge of Scottish TMA-4 before turning south towards VOSNE.
> VOSNE End of SID. Placed 7NM from the EDIBO protected area.

4.7.3. Speed Restrictions

> PHN09 220KIAS - to accommodate the turn from PHW15.
> PHN21 250KIAS - as requested by CAA - first WP where a/c can accelerate to 250KIAS.

4.7.4. Procedure Design Gradient

Standard 3.3% procedure design climb gradient is required.

4.7.5. Climb Gradients

The following climb gradients are required to meet the level restrictions.
The path terminator at PHN09 is DF which means that, following the FO WP PHW15, there will be a significant variation in track distance flown (determined by a combination of speed, bank angle and when the turn is initiated by the FMS). If the turn is initiated at the earliest point the distance flown to subsequent WPs is reduced. Since this will provide the most adverse required gradient this shortest track is measured in the calculation; if the turn is initiated later then the gradient will reduce since the aircraft has further distance with which to climb to the required altitude.

DER	PHW15	$\begin{aligned} & \text { PHNO9 } \\ & +4000 \\ & \hline \end{aligned}$	PHN21	$\begin{aligned} & \text { PHE33 } \\ & \text { +FL90 } \end{aligned}$		$\begin{gathered} \text { VOSNE } \\ \text { FL150 } \end{gathered}$
		9.64\%	9.01\%		4.18\%	8.02\%
	9.64\%		9.01\%		6.14\%	

4.7.6. Procedure Level Restrictions

> PHN09 At or above 4000alt -to ensure separation against RWY 24 approaches.
> PHE33 At or above FL90 - to ensure separation against the EDIBO 1C transition.
> PHE50 At or above FL110 - as requested by PC.
> VOSNE At FL150 - to ensure separation against the EDIBO hold.

4.7.7. Airspace Containment

The level restrictions guarantee that aircraft will remain within controlled airspace for the entire procedure

4.7.8. Non-Compliances

None.

4.7.9. Procedure Coding of Initial Leg

The proposed design starts with a CA to 650alt. At the request of the CAA it was investigated as to whether an initial CA leg could be avoided in favour of relying on a level restriction at PHW15. After consideration it is felt that this proposition would be impracticable for this procedure due to the proximity of the first WP to DER. Placing a level restriction here would require publishing a high ATC climb gradient on the chart.

4.7.10. Additional Comments

The minimum altitude at which a turn may commence is 650 ft alt due to required MOC in the TIA. For this reason, an initial CA leg to 650ft alt is specified in the coding table and noted on the chart.

PANS-OPS does not give guidance on the WP spacing between a FO and the subsequent DF WP. Assurance for the spacing in this design is derived by ensuring that the straight portion of flight by a nominal (10% climb gradient, 20° angle of bank, 220KIAS) aircraft is longer than the MSD required at PHN09 for the required turn by this nominal.

From VOSNE aircraft can route to HAVEN via Z506. This routing interacts with the EDIBO hold; this interaction is discussed in the Route Separation Assurance Document.

The EDIBO hold has been placed in the DWG file to provide context when viewing this SID; it is for reference purposes only.

4.8. EMJEE 1D

Designer	Checker	AutoCAD File
		5248 - EGPH - UTM84-30N

4.8.1. Procedure Overview

This SID is intended for jet departures via GOSAM and GOW.

4.8.2. Waypoint Placement Rationale

> PHE35 Prevents turns before DER.
> PHE37 Track PHE35 - PHE37 avoids overflying Cramond as per the current conventional procedures.
> PHN11 Establishes the leg to PHW17 over water.
> PHW17 Establishes the leg to EMJEE.
> EMJEE End of SID.

4.8.3. Speed Restrictions

> PHN11 220KIAS - to accommodate the turn from PHE37.
> PHW17 250KIAS - as requested by CAA - first WP where a/c can accelerate to 250KIAS.

4.8.4. Procedure Design Gradient

A 3.9% PDG to 636 ft alt is required due to obstacles in the climb out.

4.8.5. Climb Gradients

The following climb gradients are required to meet the level restrictions. The gradients are calculated using point to point distances between WPs.

The path terminator at PHN11 is DF which means that, following the FO WP PHE37, there will be a significant variation in track distance flown (determined by a combination of speed, bank angle and when the turn is initiated by the FMS). If the turn is initiated at the earliest point the distance flown to subsequent WPs is reduced. Since this will provide the most adverse required gradient this shortest track is measured in the calculation; if the turn is initiated later then the gradient will reduce since the aircraft has further distance with which to climb to the required altitude.

DER / PHE35	PHE37	PHN11	PHW17 +FL90	EMJEE FL100

4.8.6. Procedure Level Restrictions

```
> PHW17 At or above FL90 - as requested by PC.
> EMJEE At FL100 - as requested by PC.
```


4.8.7. Airspace Containment

The level restrictions guarantee that aircraft will remain within controlled airspace for the entire procedure.

4.8.8. Non-Compliances

Since PHE35 is less than 1NM from DER the procedure is not compliant with CAP778 (Chapter 5, para 5.3) however this configuration has been recommended by CAA in order to prevent turns occurring before DER and successfully trialled in flight simulations.

4.8.9. Additional Comments

From EMJEE aircraft can either route via N537 to GOW or MAC or via Z500 to GOSAM.

4.9. GRICE 5D

Designer	Checker	AutoCAD File
		$5248-$ EGPH - UTM84-30N

4.9.1. Procedure Overview

This SID is intended for all aircraft types departing to the north via GRICE.

4.9.2. Waypoint Placement Rationale

> PHE35 Prevents turns before DER.
> PHE37 Track PHE35 - PHE37 avoids overflying Cramond as per the current conventional procedures.
> PHN15 Lateral airspace containment (against edge of CTA-2 and 3).
> PHN22 Provides for turn to GRICE whilst maintaining airspace containment.
> GRICE End of SID.

4.9.3. Speed Restrictions

> PHN15 220KIAS - to accommodate the turn from PHE37.
> PHN22 250KIAS - as requested by CAA - first WP where a/c can accelerate to 250KIAS.

4.9.4. Procedure Design Gradient

A 3.9% PDG to 636 ft alt is required due to obstacles in the climb out.

4.9.5. Climb Gradients

The following climb gradients are required to meet the level restrictions. The gradients are calculated using point to point distances between WPs.

The path terminator at PHN15 is DF which means that, following the FO WP PHE37, there will be a significant variation in track distance flown (determined by a combination of speed, bank angle and when the turn is initiated by the FMS). If the turn is initiated at the earliest point the distance flown to subsequent WPs is reduced. Since this will provide the most adverse required gradient this shortest track is measured in the calculation; if the turn is initiated later then the gradient will reduce since the aircraft has further distance with which to climb to the required altitude.

DER / PHE35	PHE37	PHN15	PHN22 +4500	GRICE 6000					
4.62%								3.04%	

4.9.6. Procedure Level Restrictions

```
> PHN22 At or above 4500alt - to ensure airspace containment into CTA-3.
> GRICE At 6000alt - as requested by PC.
```


4.9.7. Airspace Containment

The level restrictions guarantee that aircraft will remain within controlled airspace for the entire procedure.

Note that the routing 2NM from the edge of CAS is less than that required but is the same separation that exists with the current SIDs.

4.9.8. Non-Compliances

Since PHE35 is less than 1NM from DER the procedure is not compliant with CAP778 (Chapter 5, para 5.3) however this configuration has been recommended by CAA in order to prevent turns occurring before DER and successfully trialled in flight simulations.

4.9.9. Additional Comments

From GRICE aircraft can route via FOYLE to N560, via P600 Eastbound, or leave CAS to the north.

4.10. VOSNE1D

Designer	Checker	AutoCAD File
		5248 - EGPH - UTM84-30N

4.10.1. Procedure Overview

This SID is intended for jet departures to the south via HAVEN.

4.10.2. Waypoint Placement Rationale

> PHE35 Prevents turns before DER.
> PHE47 Track PHE35 - PHE47 avoids overflying Cramond as per the current conventional procedures.
> PHE48 Airspace containment.
> PHE49 So that this route is separated by 25° from KRAGY 1D, this WP defines a track to the north-east such that the turn to the south will be sufficiently separated and remains 3NM inside the edge of Scottish TMA-3.
> PHE50 Ensures that the route is 3NM inside the edge of Scottish TMA-4.
> VOSNE End of SID. Placed 7NM from the EDIBO protected area.

4.10.3. Speed Restrictions

> PHE49 220KIAS - to accommodate MSD for leg to PHE50.
> PHE50 250KIAS - to accommodate MSD.

4.10.4. Procedure Design Gradient

A 3.9% PDG to 636 ft alt is required due to obstacles in the climb out.

4.10.5. Climb Gradients

The following climb gradients are required to meet the level restrictions. The gradients are calculated using point to point distances between WPs.

DER / PHE35	PHE47	$\begin{aligned} & \text { PHE48 } \\ & +3000 \end{aligned}$		$\begin{aligned} & \text { PHE49 } \\ & + \text { FL80 } \end{aligned}$		$\begin{aligned} & \text { PHE50 } \\ & +F L 110 \end{aligned}$		VOSNE FL150
	4.17\%		17.18\%		8.39\%		8.02\%	
					8.39\%		8.02\%	

4.10.6. Procedure Level Restrictions

> PHE48	At or above 3000alt - to ensure airspace containment into CTA-2.
> PHE49	At or above FL80 - Separation against KRAGY 1D.
> PHE50	At or above FL110 - as requested by PC.
> VOSNE	At FL150 - to ensure separation against the EDIBO hold.

4.10.7. Airspace Containment

The level restrictions guarantee that aircraft will remain within controlled airspace for the entire procedure.

4.10.8. Non-Compliances

Since PHE35 is less than 1NM from DER the procedure is not compliant with CAP778 (Chapter 5, para 5.3) however this configuration has been recommended by CAA in order to prevent turns occurring before DER and successfully trialled in flight simulations.

4.10.9. Additional Comments

From VOSNE, aircraft can route via the Z506 link route to Y96. This routing interacts with the EDIBO hold; this interaction is discussed in the Route Separation Assurance Document.

The EDIBO hold has been placed in the DWG file to provide context when viewing this SID; it is for reference purposes only.

4.11. KRAGY 1D

Designer	Checker	AutoCAD File
\square		$5248-$ EGPH - UTM84-30N

4.11.1. Procedure Overview

This SID is intended for non-jet aircraft as a replacement for the current TLA6D.

4.11.2. Waypoint Placement Rationale

> PHE35 Prevents turns before DER.
> PHE42 Track PHE35 - PHE42 avoids overflying Cramond as per the current conventional procedures.
> PHE28 Route to the east avoids tracking over land and with 25° separation from VOSNE 1 D .
> PHE29 This position is far enough east and south that the turn back to the west avoids Edinburgh and remains 5NM separated from VOSNE 1D.
> PHE30 In conjunction with previous WP, makes turn to west avoid Edinburgh and Mayfield whilst flying between Dalkeith, Bonnyrigg and Loanhead.
> PHS17 For separation against arrival transitions.
> KRAGY End of SID.

4.11.3. Speed Restrictions

> PHE29 220KIAS - to accommodate MSD requirements for previous segments.
> PHE30 250KIAS - to accommodate MSD requirements.

4.11.4. Procedure Design Gradient

A 3.9\% PDG to 636 ft alt is required due to obstacles in the straight climb from DER.

4.11.5. Climb Gradients

The following climb gradients are required to meet the level restrictions. The gradients are calculated using point to point distances between WPs.

DER / PHE35	PHE42	PHE28 +3000	PHE29 +4000, FL80	PHE30	PHS17 +FL90	KRAGY FL100

4.11.6. Procedure Level Restrictions

> PHE28 At or above 3000alt - to ensure airspace containment into CTA-2.
> PHE29 At or above 4000alt - to ensure airspace containment into CTA-4. At or below FL80 - to ensure separation against VOSNE 1D.
> PHS17 At or above FL90 - to ensure separation against the EDIBO 1D transition.
> KRAGY At FL100 - as requested by PC.

4.11.7. Airspace Containment

The level restrictions guarantee that aircraft will remain within controlled airspace for the entire procedure.

4.11.8. Non-Compliances

Since PHE35 is less than 1NM from DER the procedure is not compliant with CAP778 (Chapter 5, para 5.3) however this configuration has been recommended by CAA in order to prevent turns occurring before DER and successfully trialled in flight simulations.

4.11.9. Additional Comments

4.11.9.1. Routing Beyond KRAGY

From KRAGY aircraft can route via Z507 to TLA.

4.11.9.2. Obstacle Assessment

Ordinarily, the assessment of a turning SID would involve two workbooks: one for the straight portion and one for the turning area. The turning workbook would assess one obstacle set for everything in the turn area and ensure distances from the TIA or K-K are calculated and tested for clearance. The calculated distance from TIA is 'nearest' and in the case of this SID does not take into account that the route of the SID doubles back on itself thereby resulting in over penalising requirements for some obstacles.

To overcome this problem, two turning workbooks have been used in the assessment of this SID turn area. The first is used conventionally and assesses obstacles up to the red line shown in the illustration below.

The second workbook assesses the remaining obstacles beyond the red line. For the purposes of the variable parameter inputs, dr* (used to calculate the MOC provided by 0.8% of track distance) has been calculated as the sum of the distance of the early track to PHE42 and the distance from PHE42 to the red line; which is considered to be conservative. "Starting altitude" is the min turn at (636 ft) plus height gain at 3.3% along the shortest distance to the red line, along the inside of the turn.

4.11.9.3. Vertical Window

The level restriction at PHE29 requires an altitude lower limit and an upper limit flight level. This duality has been considered and it has been established that aircraft FMS are able to cater for both altitude and FL constraints at a waypoint. The FL constraints are considered to be sufficiently far from the transition altitude for there to be sufficient vertical allowance for extreme variance in pressure.

4.12. Omni Directional SIDs

Designer	Checker	AutoCAD File
		5248 - EGPH - UTM84-30N
		dwg

Omni directional departures have been designed for each runway. These will provide an obstacle clear route for aircraft which are not RNAV1 equipped to depart, following a departure clearance from ATC.

Both require aircraft to climb to 500 ft above aerodrome before making a turn onto desired track and each requires a climb gradient in order to clear obstacles to the south. The gradients also allow aircraft to make a turn earlier than would have been permissible at the standard PDG. Obstacle assessment has been carried out to 6000ft as per the methodology in section 3.4.

5. STARs

5.1. Design Rationale

5.1.1. Routes

The route designs and particular waypoint placement are based on replication of the existing conventional and B-RNAV STARs to TWEED and STIRA. The TWEED STARs are amended to terminate at the new EDIBO hold.

5.1.2. Procedure Naming

As the UK is moving to ICAO compliant procedure naming the STARs will be named based on their start point.

5.1.3. Descent Gradients

The PANS-OPS maximum descent gradient of 8% for the initial approach segment was used for the construction of protection areas and calculation of minimum segment lengths.

5.1.4. Level Restrictions

Level restrictions have been placed based on the airspace requirements around the tracks.

5.1.5. Maximum True Airspeed

In order to limit the True Airspeed (TAS) to a realistic Mach number the altitude calculations were originally limited to 40,000ft. In subsequent revisions the Indicated Airspeed (IAS) was set using the "goal seek" function in Excel to set the TAS to 480kts. However, the original limit of 40,000ft was left in place. In practice, this does not affect the construction of the protection areas as the wind spirals are based on the TAS so any combination of IAS and altitude that produces a TAS of 480kts will result in the same windspiral.

5.1.6. Navigation Specification

The STARs were originally designed using the RNAV1 navigation specification as the RNAV5 navigation specification is not applicable for arrivals within 30NM of the ARP. However, at the request of PC these have been changed to RNAV5 in order to provide arrival routes for nonRNAV1 equipped aircraft.

PANS-OPS does not provide fix tolerance or semi-area widths for the RNAV5 navigation specification within 30NM of the ARP. Based on the RNAV1 values the XTT (cross track tolerance) and ATT (along track tolerance) remain constant for DME/DME RNAV in all phases of flight. The semi-area width has therefore been calculated based on the formula $1 ⁄ 2 \mathrm{~A} / \mathrm{W}=1.5 \times \mathrm{XTT}$ + BV (buffer value). This results in a semi-area width of 5.95 NM within 30 NM .

5.2. BLACA 1E

Designer	Checker	AutoCAD File	
			and
		$5248-$ EGPH - UTM84-30N	dwg

5.2.1. Procedure Overview

This STAR is an RNAV replication of the current TWEED 2B STAR from BLACA to TLA VOR, based on the existing STAR instruction. Beyond TLA the STAR connects to the new EDIBO hold via GEVEZ.

5.2.2. Waypoint Placement Rationale

> BLACA	Existing fix on TWEED 2B STAR.
$>$ TUNSO	Existing fix on TWEED 2B STAR.

> PHS45 Placed at the point where the track from TUNSO to TLA crosses the TMA-2 boundary.
> PHS46 Placed 10NM from TLA on track from TUNSO to TLA.
> TLA Existing fix on TWEED 2B STAR.
> GEVEZ Placed 6NM from EDIBO on the inbound holding axis.
> EDIBO Location of new hold.

5.2.3. Speed Restrictions

> PHS46 250KIAS - to enforce existing speed limit on TWEED 2B STAR.
> EDIBO 230KIAS - to align with hold and transition speed.

5.2.4. Procedure Level Restrictions

> TUNSO At or below FL170 - to enforce existing "expect" level on TWEED 2B STAR.
> PHS45 At or above FL130 - to ensure aircraft remain 500ft above the base of P600 airway.
> EDIBO Between FL70 and FL100 - to align with hold and transition levels.

5.2.5. Airspace Containment

The level restrictions guarantee that aircraft will remain within controlled airspace for the entire procedure.

5.2.6. Non-Compliances

RNAV5 is not an appropriate navigation specification for use within 30NM of the ARP.

5.2.7. Additional Comments

None

5.3. BLACA 1F

Designer	Checker	AutoCAD File	
			and
		$5248-$ EGPH - UTM84-30N	dwg

5.3.1. Procedure Overview

This STAR is an RNAV replication of the current TWEED 2C STAR from BLACA to TLA VOR, based on the existing STAR instruction. Beyond TLA the STAR connects to the new EDIBO hold via GEVEZ.

5.3.2. Waypoint Placement Rationale

| > BLACA | Existing fix on TWEED 2C STAR. |
| :--- | :--- | :--- |
| > GIRVA | Existing fix on TWEED 2C STAR. |
| > PHS47 | Placed 10NM from TLA on track from GIRVA to TLA. |
| > TLA | Existing fix on TWEED 2C STAR. |
| > GEVEZ | Placed 6NM from EDIBO on the inbound holding axis. |
| > EDIBO | Location of new hold. |

5.3.3. Speed Restrictions

> PHS47 250KIAS - to enforce existing speed limit on TWEED 2C STAR.
> EDIBO 230KIAS - to align with hold and transition speed.

5.3.4. Procedure Level Restrictions

> GIRVA At or below FL120 - to enforce existing "expect" level on TWEED 2C STAR.
> EDIBO Between FL70 and FL100 - to align with hold and transition levels.

5.3.5. Airspace Containment

The level restrictions guarantee that aircraft will remain within controlled airspace for the entire procedure.

5.3.6. Non-Compliances

RNAV5 is not an appropriate navigation specification for use within 30NM of the ARP.

5.3.7. Additional Comments

None

5.4. ESKDO 1E

Designer	Checker	AutoCAD File	
			and
		$5248-$ EGPH - UTM84-30N	dwg

5.4.1. Procedure Overview

This STAR is an RNAV replacement for the current TWEED 3A STAR from ESKDO, based on the existing STAR instruction. The STAR now connects directly from ESKDO to GEVEZ.

5.4.2. Waypoint Placement Rationale

> ESKDO Existing waypoint on TWEED 3A STAR.
> GEVEZ Placed 6NM from EDIBO on the inbound holding axis.
> EDIBO Location of new hold.

5.4.3. Speed Restrictions

> ESKDO 250KIAS - to enforce existing speed limit on TWEED 3A STAR but moved to ESKDO to remove PANS-OPS non-compliant leg from ESKDO to PHS48.
> EDIBO 230KIAS - to align with hold and transition speed.

5.4.4. Procedure Level Restrictions

> ESKDO At or below FL200 - to enforce existing "expect" level at INREV on TWEED 3A STAR.
> EDIBO Between FL70 and FL100 - to align with hold and transition levels.

5.4.5. Airspace Containment

The level restrictions guarantee that aircraft will remain within controlled airspace for the entire procedure.

5.4.6. Non-Compliances

RNAV5 is not an appropriate navigation specification for use within 30NM of the ARP.

5.4.7. Additional Comments

The leg from ESKDO to PHS48 did not comply with the minimum segment length requirements in PANS-OPS. Prestwick Centre has agreed that this waypoint can be removed and the 250KIAS speed restriction can be placed at ESKDO instead.

The existing TWEED 3A STAR includes "expect" levels at INPIP and INREV. The portion of airway N601 between INPIP and ESKDO has therefore been shown on the chart as a dashed line along with the waypoints INPIP, UTOGU, and INREV.

5.5. HAVEN 1E

Designer	Checker	AutoCAD File	
		and	$5248-$ EGPH - UTM84-30N

5.5.1. Procedure Overview

This STAR is an RNAV replacement for the current TWEED 2D STAR from HAVEN, based on the existing STAR instruction. The STAR now connects directly from HAVEN to GEVEZ.

5.5.2. Waypoint Placement Rationale

> HAVEN Existing fix on TWEED 2D STAR.
> GEVEZ Placed 6NM from EDIBO on the inbound holding axis.
> EDIBO Location of new hold.

5.5.3. Speed Restrictions

> HAVEN 250KIAS - to enforce existing speed limit on TWEED 2D STAR.
> EDIBO 230KIAS - to align with hold and transition speed.

5.5.4. Procedure Level Restrictions

> HAVEN At or below FL260 - to enforce existing "expect" level at AGPED on TWEED 2D STAR.
> EDIBO Between FL70 and FL100 - to align with hold and transition levels.

5.5.5. Airspace Containment

The level restrictions guarantee that aircraft will remain within controlled airspace for the entire procedure.

5.5.6. Non-Compliances

RNAV5 is not an appropriate navigation specification for use within 30NM of the ARP.

5.5.7. Additional Comments

The existing TWEED 2D STAR includes an "expect" level at AGPED. The portion of airway Y96 between AGPED and HAVEN has therefore been shown on the chart as a dashed line along with the waypoints AGPED, OTBUN, and IPSAD.

5.6. PTH 1E

Designer	Checker	AutoCAD File	
		and	$5248-$ EGPH - UTM84-30N

5.6.1. Procedure Overview

This STAR is an RNAV replication of the current STIRA 1A STAR from PTH VOR, based on the existing STAR instruction.

5.6.2. Waypoint Placement Rationale

> PTH	Existing fix on STIRA 1A STAR.
> EDONU	Existing fix on P600 airway where the base of the airway changes from FL85 to FL55.
	GRICE

5.6.3. Speed Restrictions

> GRICE 250KIAS - to enforce existing speed limit on STIRA 1A STAR.
> STIRA 230KIAS - to align with hold speed.

5.6.4. Procedure Level Restrictions

> EDONU At or above FL90 - to ensure aircraft remain 500ft above the base of P600 airway.
> GRICE At FL70 - to enforce existing "expect" level on STIRA 1A STAR.
> STIRA At FL70 - to align with hold level.

5.6.5. Airspace Containment

The level restrictions guarantee that aircraft will remain within controlled airspace for the entire procedure.

5.6.6. Non-Compliances

RNAV5 is not an appropriate navigation specification for use within 30NM of the ARP.

5.6.7. Additional Comments

This procedure commences at PTH which is within 30NM of the Edinburgh ARP. The entire procedure should therefore be designed using Initial Approach criteria which includes a speed restriction of 250KIAS. However, as it is replicating the existing STIRA 1A STAR which includes a 250KIAS speed limit point at GRICE the procedure was designed using 315KIAS before GRICE to protect for any aircraft which fly the first portion of the procedure above 250KIAS.

Aircraft in the STIRA hold will be tactically vectored onto the final approach for either Runway 06 or Runway 24. In the rare event of a radar failure, aircraft could be instructed to self-position to the EDN or UW NDB and fly the racetrack initial approach procedure.

6. Approach Transitions

6.1. Design Rationale

6.1.1. Routes

The route designs and particular waypoint placement have been developed from feedback received from stakeholders and the requirement to comply with design criteria.

6.1.2. Procedure Naming

During the project the approach transitions were referred to by their end point. The initial flight validation was conducted using these names. As the UK is moving to ICAO compliant procedure naming the transitions will now be named based on their start point. Below is a decode table for the routes:

Runway	Initial Validation Name	Supplemental Validation Name	Submission Name
06	FAULD 1A	EDIBO 1B	EDIBO 1D
24	FIRTH 1A	EDIBO 1A	EDIBO 1C

6.1.3. Descent Gradients

These procedures have been designed to accommodate Continuous Descent Operations as described in ICAO Doc. 9931. For the final two legs of each procedure (base leg and intermediate approach segment) the nominal altitudes were calculated using the average of the upper limit of $350 \mathrm{ft} / \mathrm{NM}$ and lower limit of $160 \mathrm{ft} / \mathrm{NM}$. (4.2\%) For all legs preceding the base leg the nominal altitudes were calculated using the average of the upper limit of $350 \mathrm{ft} / \mathrm{NM}$ and lower limit of 220ft/NM. (4.7\%)

The PANS-OPS maximum descent gradients of 8% for the initial approach segment and 5.2% for the intermediate approach segment were used for the construction of protection areas and calculation of minimum segment lengths.

6.1.4. Level Restrictions

Level restrictions have been placed based on the airspace requirements around the tracks.

6.1.5. ATC Phraseology

Standard ATC phraseology for aircraft leaving the existing TWEED hold is:
"Hold cancelled. Fly heading XXX‥" or "Hold cancelled. Leave TWEED heading XXX."
The first phraseology instructs an aircraft to turn immediately onto the specified heading. The second phraseology instructs an aircraft to continue the hold until reaching TWEED then turn onto the specified heading.

Once the approach transitions have been published new phraseology will be required. Potential options are:

"Hold Cancelled. Cleared EDIBO 1C and ILS approach Runway 24. Report localiser established."

This would instruct an aircraft to continue to hold until reaching EDIBO. It would then fly-over EDIBO and fly the EDIBO 1C transition and ILS approach to Runway 24.
"Hold Cancelled. Cleared EDIBO 1D and ILS approach Runway 06. Report localiser established". "Route direct EDIBO."

This would instruct an aircraft to turn immediately to EDIBO. It would then fly-by EDIBO and fly the EDIBO 1D transition and ILS approach to Runway 06. This phraseology could also be used to route aircraft directly to another waypoint on the transition although the controller would be responsible for obstacle clearance until the aircraft had established on the procedure.

Suitable phraseology will need to be agreed before these procedures become effective.

6.2. EDIBO 1C

Designer	Checker	AutoCAD File
		5248 - EGPH - UTM84-30N $\quad \mathrm{dwg}$

6.2.1. Procedure Overview

A new approach transition linking the EDIBO hold to the ILS or RNAV(GNSS) approach to Runway 24.

6.2.2. Waypoint Placement Rationale

> EDIBO Location of new hold.
> PHS16 Placed on the hold axis such that the track from PHS16 to TRIAR would pass between Bonnyrigg and Newtongrange.
> SEEDI Placed where the track from PHS16 to TRIAR crosses the centre of the current arrival vectoring swathe.
> TRIAR At the point where the base leg with a 90° turn at ABSEK crosses the coast.
> ABSEK Location of the IF for the RWY 24 instrument approach procedures.

6.2.3. Speed Restrictions

> EDIBO 230KIAS - to align with hold speed.
> TRIAR 185KIAS - to ensure aircraft reduce speed prior to the base leg.

6.2.4. Procedure Level Restrictions

> EDIBO Between FL70 and FL100 - to align with hold and STAR levels.
> SEEDI At or below FL80 - to ensure separation against the VOSNE 1C SID.
> TRIAR At or above 4000alt - to ensure aircraft remain 500ft above the base of CTA-4.
> ABSEK Between 3000alt and 4000alt - to ensure aircraft remain 500ft above the base of CTA-2.

6.2.5. Airspace Containment

The level restrictions guarantee that aircraft will remain within controlled airspace for the entire procedure.

6.2.6. Non-Compliances

None

6.2.7. Additional Comments

None

6.3. EDIBO 1D

Designer	Checker	AutoCAD File
		5248 - EGPH - UTM84-30N $\quad \mathrm{dwg}$

6.3.1. Procedure Overview

A new approach transition linking the EDIBO hold to the ILS or RNAV(GNSS) approach to Runway 06.

6.3.2. Waypoint Placement Rationale

> EDIBO Location of new hold.
> BIRCH Placed to keep the nominal track to the south of Auchengray and Tarbrax.
> PHS18 Placed where the track from BIRCH to ADLOM crosses 7NM from the LANAK hold.
> ADLOM At the point where the base leg with a 90° turn at VETID crosses the CTA-4 / CTA1 airspace boundary.
> VETID Location of the IF for the RWY 06 instrument approach procedures.

6.3.3. Speed Restrictions

> EDIBO 230KIAS - to align with hold speed.
> ADLOM 185KIAS - to ensure aircraft reduce speed prior to the base leg.

6.3.4. Procedure Level Restrictions

> EDIBO Between FL70 and FL100 - to align with hold and STAR levels.
> BIRCH At or below FL80 - to ensure separation against the KRAGY 1D SID.
> PHS18 At or above 6000alt - to ensure separation against aircraft in the LANAK (or replacement) hold.
> ADLOM At or above 4000alt - to ensure aircraft remain 500ft above the base of CTA-4.
> VETID Between 3000alt and 4000alt - to ensure aircraft remain 500ft above the base of CTA-1.

6.3.5. Airspace Containment

The level restrictions guarantee that aircraft will remain within controlled airspace for the entire procedure.

6.3.6. Non-Compliances

None

6.3.7. Additional Comments

The currently published LANAK hold has been included in the AutoCAD drawing for reference purposes. The proposed replacement RULUR hold has also been included but the location and orientation may still change.

The currently published charts for the STARs to LANAK do not mention the available holding levels. In order to assure vertical separation between the LANAK hold and EDIBO 1D, we recommend that the vertical limits be added to these charts.

The LANAK hold is closer to the BIRCH - ADLOM track than the currently proposed replacement (RULUR). Waypoint PHS18 therefore provides vertical separation against either the LANAK hold or the RULUR hold.

7. Instrument Approach Procedures

7.1. Design Rationale

7.1.1. \quad Aircraft Modelling

As per ICAO PANS-OPS DOC 8168 Vol. 2 Part II Section I Chapter 1 1.4.7.3 Determination of OCA/H with basic ILS surfaces:

If the basic ILS surfaces listed above are penetrated by objects other than those listed in Table II-1-1-3, the OCA/H may be calculated directly by applying height loss/altimeter margins to obstacles (see 1.4.8.8, "Determination of OCA/H with OAS or basic ILS surfaces")

Table II-1-1-3 Objects which may be ignored in OCA/H calculations

	Maximum height above threshold	Minimum lateral distance from runway centreline
GP Antenna	$17 \mathrm{~m}(55 \mathrm{ft})$	120 m
Aircraft taxiing	$22 \mathrm{~m}(72 \mathrm{ft})$	150 m
A/C in holding bay or in taxi holding position at a range between threshold and -250 m	$22 \mathrm{~m}(72 \mathrm{ft})$	120 m
A/C in holding bay or in taxi holding position at a range between threshold and -250 m (CAT I only)	$15 \mathrm{~m}(50 \mathrm{ft})$	75 m

Aircraft with the tail heights at Edinburgh Airport are considered to be Boeing 747 with maximum tail heights of 19.4 m . This aircraft type has been modelled at the relevant holding points and taxiways to simulate aircraft holding or taxiing for the purposes of obstacle assessment.

Aircraft have been modelled as columns dimensions as follows:

	Lateral Tolerance	Max Tail Height above ground
Boeing 747	2 m	19.4 m

Where surveyed elevations are available - such as at holding points - the maximum elevations are determined by adding the maximum tail height to the surveyed elevation at those points. For the taxiways, aircraft have been modelled along the line between adjacent holding points at a spacing of no more than 100 m . For these aircraft, the maximum elevations are determined by adding the maximum tail height to the higher of the adjacent holding points.

7.1.2. ILS Obstacle Assessment

ICAO PANS-OPS Doc 8168 describes three methods to determine the OCA/H for an ILS procedure. They are assessment using the Basic surfaces, Obstacle Assessment Surfaces (OAS) and/or Collision Risk Model (CRM). CRM will only assess the obstacles which penetrate the Basic
surfaces contained within the lateral bounds of the OAS, therefore only obstacles that are contained within the OAS have been considered.

The minima for the ILS approach procedures in this report have been determined by the CRM method; as such no other obstacle analysis methods have been applied.

7.1.3. Baro-VNAV Parameters

METAR data for Edinburgh from 22 August 2011 to 22 December 2016 was downloaded from the lowa Environmental Mesonet. The surface temperature data was analysed and it was found to rarely fall below $-5^{\circ} \mathrm{C}$ with the lowest readings being $-8^{\circ} \mathrm{C}$. The minimum temperature for the BaroVNAV approach procedures was therefore set to $-10^{\circ} \mathrm{C}$.

7.1.4. RNAV Missed Approach Assessment

Due to the complexity of the RNAV missed approaches, the protection areas have been constructed in four stages then combined to create the complete area for obstacle assessment. The four stages are:

1 Aircraft reach 3000ft at the end of the turn initiation area before turning.
2 Aircraft reach 3000ft before the first missed approach waypoint. Aircraft with a small turn radius arrive at the second missed approach waypoint from the early turn point of the first waypoint.

3 Aircraft reach 3000ft before the first missed approach waypoint. Aircraft with a large turn radius arrive at the second missed approach waypoint from a tangent to the largest calculated nominal turn.

4 Aircraft reach 3000ft before the first missed approach waypoint. The FMS is unable to sequence the second missed approach waypoint so the aircraft continues turning direct to the missed approach hold.

7.2. Minimum Sector Altitudes

Designer	Checker	AutoCAD File
		$5248-$ EGPH - UTM84-30N

7.2.1. Procedure Overview

The existing ILS and LOC procedures have IAFs at NDB(L) EDN and NDB(L) UW. The MSAs for these two navigation aids have been reassessed against the latest obstacle data. The new RNAV(GNSS) procedures do not reference any conventional navigation aids and therefore the MSA is centred on the ARP.

According to PANS-OPS the MSA for an RNAV procedure shall be a single sector. However, PANSOPS also states that if an airport has multiple MSAs that are located less than 5NM apart then the minimum sector altitude for any given sector should be the highest of all altitudes calculated for that specific sector for each of those MSAs.

The CAA has requested that all three MSAs are combined, even though NDB (L) UW is greater than 5NM away from both the ARP and NDB(L) EDN. The ARP MSA has therefore been assessed as a standard four sector MSA and the highest value from all three MSAs for each sector has been used for all instrument approach charts.

7.2.2. Minima

7.2.2.1. MSA ARP

Sector	MOCA	Obstacle ID	Description	Elevation
$360^{\circ}-090^{\circ}$	2700 ft	OSVM12371	Spot Height - OSVM Spot Height	522 m
$090^{\circ}-180^{\circ}$	3900 ft	UK0171G521F	MICROWAVE TOWER - TYPE I (HAS REFLECTOR CONE) HEARTHSTANE LOTHIAN L20T	871 m
$180^{\circ}-270^{\circ}$	3900 ft	UK0171G521F	MICROWAVE TOWER - TYPE I (HAS REFLECTOR CONE) HEARTHSTANE LOTHIAN L20T	871 m
$270^{\circ}-360^{\circ}$	3400 ft	OSVM13631	Spot Height - OSVM Spot Height	721 m

7.2.2.2. MSA NDB(L) EDN

Sector	MOCA	Obstacle ID	Description	Elevation
$360^{\circ}-090^{\circ}$	2700 ft	OSVM12371	Spot Height - OSVM Spot Height	522m
$090^{\circ}-180^{\circ}$	3900ft	UK0171G521F	MICROWAVE TOWER - TYPE I (HAS REFLECTOR CONE) HEARTHSTANE LOTHIAN L20T	871m
$180^{\circ}-270^{\circ}$	3900ft	UK0171G521F	MICROWAVE TOWER - TYPE I (HAS REFLECTOR CONE) HEARTHSTANE LOTHIAN L20T	871m
$270^{\circ}-360^{\circ}$	3400 ft	OSVM13631	Spot Height - OSVM Spot Height	721m
7.2.2.3. MSA NDB(L) UW				
Sector	MOCA	Obstacle ID	Description	Elevation
$360^{\circ}-090^{\circ}$	3000ft	OSVM13606	Spot Height - OSVM Spot Height	610 m
090 ${ }^{\circ}-180^{\circ}$	3900ft	UK0171G521F	MICROWAVE TOWER - TYPE I (HAS REFLECTOR CONE) HEARTHSTANE LOTHIAN L20T	871m
$180^{\circ}-270^{\circ}$	3900ft	UK0171G521F	MICROWAVE TOWER - TYPE I (HAS REFLECTOR CONE) HEARTHSTANE LOTHIAN L20T	871m
$270^{\circ}-360^{\circ}$	3400 ft	OSVM13631	Spot Height - OSVM Spot Height	721m

7.3. Visual Manoeuvring (Circling)

Designer	Checker	AutoCAD File
		$5248-$ EGPH - UTM84-30N

7.3.1. Procedure Overview

The existing ILS and LOC procedures have VM(C) minima published for both the "Total Area" and "North of RWY 06/24". Both of these minima have been reassessed against the latest obstacle data.

According to PANS-OPS obstacles can be ignored in a specific sector which is bounded by the dimensions of the Annex 14 instrument approach surfaces. While there is a published SRA procedure to runway 30 , the Annex 14 instrument approach surfaces for that runway have not been used to construct the sector. This is due to the fact that these minima are only for publication on the approach charts to runway 06/24 and aircraft on these procedures would not enter the Annex 14 surfaces for another runway.

7.3.2. Minima

7.3.2.1. Total Area

Category	MOCA	Obstacle ID	Description	Elevation
Cat A	800ft	UK18637655F	ROTATING CRANE INDUSTRIAL A0141 18	151.00 m
Cat B	990ft	UK0171G875F	RADIO TV TOWER - TYPE I	209 m
Cat C	1480ft	14942	TREE OBST	329.75 m
Cat D	2040ft	DEM_02-0002159	DEM	498.819 m

7.3.2.2. North of RWY 06/24

Category	MOCA	Obstacle ID	Description	Elevation
Cat A	800ft	UK18637655F	ROTATING CRANE INDUSTRIAL A0141 18	151.00 m
Cat B	990ft	UK0171G875F	RADIO TV TOWER - TYPE I	209 m
Cat C	1190 ft	UK18613956F	RADIO TV TOWER - TYPE I	240 m
Cat D	1210ft	UK0171G857F	RADIO TV TOWER - TYPE I	247 m

7.4. ILS/DME RWY 06

Designer	Checker	AutoCAD File
		$5248-$ EGPH - UTM84-30N

7.4.1. Procedure Overview

The platform altitude has been lowered from the currently published 4000 ft to 3000 ft to enable the intermediate approach fix to be placed close to where aircraft are currently vectored onto final approach.

A 3.0° glide path and RDH 54 ft has been used.
DME I-VG is zero ranged to THR. See email correspondence for confirmation, which is located in the 'Other' folder supplied as part of this submission.

7.4.2. Intermediate

The Intermediate Segment is 4.0 NM long and is aligned with the final approach track. The Intermediate Fix (IF) is positioned at 12.9 D. The minimum obstacle clearance altitude (MOCA) is 2000 ft AMSL.

Sector	Min Alt	OBS.ID	Description	Elevation
Intermediate	$2000(1890)$	UK18613321F	Crane	444.00

7.4.3. Final

The Final Segment commences at the Final Approach Fix (FAF) where the nominal 3.0° glide path reaches 3000 ft AMSL on the extended runway centreline, positioned at $8.9 \mathrm{D} 061^{\circ}$. The FAF will be at 3000 ft to align with the RNAV approaches.

ILS CAT I

Aircraft Category	Published Minima	New Minima	OBS.ID	Elevation
A	$245(135)$	$283(173)$	AC0001	52.37
B	$252(142)$	$291(181)$	AC0001	52.37
C	$262(152)$	$300(190)$	AC0001	52.37
D_{L}	$271(161)$	$312(202)$	AC0001	52.37

ILS CAT II

Aircraft Category	Published Minima	New Minima	OBS.ID	Elevation
A	$158(48)$	$169(59)$	AC0001	52.37
B	$169(59)$	$180(70)$	AC0001	52.37
C	$182(72)$	$193(83)$	AC0001	52.37
D_{L}	$195(85)$	$210(100)$	AC0001	52.37

7.4.4. Missed approach

The missed approach segment commences at the point where the nominal 3.0° glide path reaches the OCA (H).

Missed approach instructions:
'Climb straight ahead to 3000', then continue as directed.

Sector	OBS.ID	Description	Elevation
Missed Approach	DEM_02-	Ground	20.048
	0002741		

The missed approach has been assessed out to 25NM from the ARP.

7.4.5. Radio Communications Failure

RCF instructions:
'Climb straight ahead to 3000', then turn left to NDB(L) EDN at 3000'.

Sector	OBS.ID	Description	Elevation
RCF	UK0171G592F	Tower	369.00

7.4.6. Reversal

Orientation - 061°
Direction - Right
Outbound limit - 14.5D
Speed - 210Kts
Maximum Altitude 4000'

Sector	OBS.ID	Description	Elevation
Reversal	UK0171A385F	Tower	591.00

7.4.7. No DME Procedure

This procedure has been removed so does not form part of this assessment so has not been considered.

7.4.8. Obstacle Free Zone

A number of frangible obstacles which penetrate the OFZ have been discounted.

OBS.ID	Description	OBS.ID	Description
13311	06_PAPI	13310	$06 _$PAPI
13312	$06 _P A P I$	13313	06_PAPI

7.4.9. Visual Segment Surface

There are no penetrations of the Visual Segment Surface.

7.5. LOC/DME RWY 06

Designer	Checker	AutoCAD File
		$5248-$ EGPH - UTM84-30N

7.5.1. Procedure Overview

The platform altitude has been lowered from the currently published 4000 ft to 3000 ft to enable the intermediate approach fix to be placed close to where aircraft are currently vectored onto final approach.

A 5.24% gradient and RDH 54 ft have been used.
DME I-VG is zero ranged to THR. See email correspondence for confirmation, which is located in the 'Other' folder supplied as part of this submission.

7.5.2. Intermediate

The intermediate is 4.0 NM long and is aligned with the final approach track. The intermediate Fix (IF) is positioned at 12.9 D . The MOCA is 2000 ft AMSL.

Sector	Min Alt	OBS.ID	Description	Elevation
Intermediate	$2000(1890)$	UK18614901F	Wind Motor	450.00

7.5.3. Final

The final segment commences at the Final Approach Fix (FAF) where the nominal 5.24% gradient reaches 3000 ft AMSL on the extended runway centreline, positioned at $8.9 \mathrm{D} 062^{\circ}$. The FAF will be at 3000 ft to align with the RNAV approaches.

The current draft chart uses a Step Down Fix (SDF) at 4.6D and 2.5D to achieve the currently published minima of 590 (480). The new dataset does not achieve the same minima and no gain can be achieved with these two fixes. One new SDF has been introduced at 2.8 D to achieve the new minima.

SDF - 2.8D

Sector	Min Alt	OBS.ID	Description	Elevation
SDF	$1010(900)$	UK01710227F	Pile	232.00

LOC Minima

Aircraft Category	Published Minima	New Minima	OBS.ID	Elevation
A - D	$590(480)$	$640(530)$	16475	119.38

7.5.4. Missed approach

The missed approach point is positioned at 1.0D.
Missed approach instructions:
'Climb straight ahead to 3000', then continue as directed.

Sector	OBS.ID	Description	Elevation
Missed Approach	15797	Tree	74.12

The missed approach has been assessed out to 25NM from the ARP.

7.5.5. RCF and Reversal

The assessments for the above sectors are common for both the ILS and LOC procedures as detailed in sections 7.4.5 and 7.4.6.

7.5.6. No DME Procedure

This procedure has been removed so does not form part of this assessment and has not been considered.

7.5.7. Visual Segment Surface

There are no penetrations of the Visual Segment Surface.

7.6. RNAV(GNSS) RWY 06

Designer	Checker	AutoCAD File
		$5248-$ EGPH - UTM84-30N

7.6.1. Procedure Overview

This procedure is designed as an overlay of the revised ILS/DME RWY 06 procedure. It is not expected to be used as the primary approach procedure to this runway but would be used for training purposes or in situations when an aircraft is unable to fly the ILS/DME approach.

The platform altitude has been lowered from the currently published 4000 ft to 3000 ft to enable the intermediate approach fix to be placed close to where aircraft are currently vectored onto final approach.

7.6.2. Technical Detail

7.6.2.1. Intermediate Approach Segment

The procedure commences at VETID which is the IF. VETID is located 12.9 NM before the RWY 06 threshold on the runway centreline. Aircraft can reach VETID via the EDIBO 1D approach transition or by receiving vectors from ATC. VETID is a fly-by waypoint with an altitude restriction of "between 3000 and 4000". The intermediate approach segment is 4.0 NM long and terminates at PH06F.

7.6.2.2. Final Approach Segment

The final approach segment commences at PH06F which is the FAF. PH06F is located 8.9NM before the RWY 06 threshold on the runway centreline where the $3.0^{\circ} \mathrm{VPA}$ reaches an altitude of 3000 ft . PH06F is a fly-by waypoint with an altitude restriction of "at 3000". The final approach segment is 8.9 NM long and terminates at RW06.

For the LNAV Only procedure a step down fix has been placed 2.4NM before the RWY 06 threshold. The MOCA prior to the SDF is 930 ft and the recommended profile at the SDF is 930 ft .

7.6.2.3. Missed Approach Segment

The missed approach segment commences at RW06 which is the MAPt. RW06 is located at the RWY 06 threshold. RW06 is a fly-over waypoint. The missed approach procedure has a maximum IAS of 210 kts .

The conventional radio communications failure instruction is "climb straight ahead to 3000, then turn left to NDB(L) UW at 3000." The equivalent RNAV coding would be to have a CA leg to 3000ft followed by a DF leg back to UW with the turn direction set to left. However UK specific design criteria prohibit this coding due to the risk of aircraft turning in the wrong direction. An alternative missed approach coding was therefore required.

A standard RNAV missed approach might involve three fly-by waypoints with 90° turns creating a "box" that brings aircraft back to the intermediate approach fix. However this would require the downwind leg to be over 5.5NM from the runway centreline and would put aircraft directly over Fife. This could also lead to confusion for air traffic control as it would be completely different from the currently published missed approach.

A new design was therefore produced which emulated the conventional missed approach as closely as possible while complying with the CAA design requirements. The missed approach
includes two additional waypoints which guarantee that aircraft will turn in the correct direction while keeping the turn point and track as similar as possible to the conventional procedure.

The first leg of the missed approach is a CF leg to PHM01 which has been placed 2.6 NM beyond the RWY 06 threshold on the runway centreline. This is approximately 7.2 NM from UW which provides adequate distance for the worst case turn to PHM02. PHM01 is a fly-over waypoint which ensures all aircraft travel far enough to ensure the remainder of the missed approach procedure is flyable.

This waypoint is followed by a CA leg to 3000 ft along the runway centreline to replicate the existing missed approach procedure. Any aircraft that reach 3000 ft prior to PHM01 would therefore execute a fly-over turn at PHM01. Any aircraft that are below 3000ft when they reach PHM01 would continue straight ahead until they reach 3000 ft .

The third leg is a DF leg to PHM02 which has been placed 4.0NM to the north of the runway centreline abeam the RWY 06 threshold. PHM02 is a fly-by waypoint and ensures that all aircraft turn left towards the Firth of Forth before returning to the hold at UW.

The final leg of the missed approach is a TF leg to UW. UW is a fly-over waypoint with an altitude restriction of "at 3000 ". This has been reduced from the currently published 4000 ft to coincide with the reduced platform altitude. Aircraft would then enter the UW hold until receiving further instructions from ATC.

7.6.2.4. Visual Segment Surface

There are no penetrations of the Visual Segment Surface.

7.6.3. Minima

7.6.3.1. LNAV/VNAV

Category	OCA	Obstacle ID	Description	Elevation
Cat A	490 ft	14684	MAST OBST	113.07 m
Cat B	500 ft	14684	MAST OBST	113.07 m
Cat C	510 ft	14684	MAST OBST	113.07 m
Cat D	520 ft	14684	MAST OBST	113.07 m

7.6.3.2. LNAV

Category	MOCA	Obstacle ID	Description	Elevation
Cat A	600 ft	16489	TREE OBST	105.70 m
Cat B	600 ft	16489	TREE OBST	105.70 m
Cat C	600 ft	16489	TREE OBST	105.70 m
Cat D	600 ft	16489	TREE OBST	105.70 m

7.7. ILS/DME RWY 24

Designer	Checker	AutoCAD File
\square		$5248-$ EGPH - UTM84-30N

7.7.1.1. Procedure Overview

A 3.0° glide path and RDH of 50 ft has been used.
DME I-TH is zero ranged to THR. See email correspondence for confirmation, which is located in the 'other' folder supplied as part of this submission.

7.7.1.2. Intermediate

The Intermediate Segment is 4.0 NM long and is aligned with the final approach track. The Intermediate Fix (IF) is positioned at 13.0D. The MOCA is 800 ft AMSL.

Sector	Min Alt	OBS.ID	Description	Elevation
Intermediate	$800(700)$	DEM_01-	Ground	71.15
		0015490		

7.7.2. Final

The final segment commences at the Final Approach Fix (FAF) where the nominal 3.0° glide path reaches 3000 ft AMSL on the extended runway centreline, positioned at $9.0 \mathrm{D} 241^{\circ}$. The FAF will be at 3000 ft to align with the RNAV approaches.

ILS CAT I

Aircraft Category	Published Minima	New Minima	OBS.ID	Elevation
A	$245(145)$	$270(170)$	AC0041	48.08
B	$253(153)$	$278(178)$	AC0041	48.08
C	$261(161)$	$288(188)$	AC0041	48.08
D_{L}	$272(172)$	$299(199)$	AC0041	48.08

ILS CAT II

Aircraft Category	Published Minima	New Minima	OBS.ID	Elevation
A	$153(53)$	$166(66)$	AC0041	48.08
B	$161(61)$	$177(77)$	AC0041	48.08
C	$173(73)$	$188(88)$	AC0041	48.08
D_{L}	$185(85)$	$205(105)$	AC0041	48.08

7.7.3. Missed approach

The missed approach segment commences at the point where the nominal 3.0° glide path reaches the OCA (H).

Missed approach instructions:
'Climb straight ahead to 3000', then continue as directed.

Sector	OBS.ID	Description	Elevation
Missed Approach	DEM_02-0000854	Tower	201.2

The missed approach has been assessed out to 25NM from the ARP.

7.7.4. Radio Communications Failure

RCF instructions:
'Climb straight ahead to 3000', then turn right to NDB(L) EDN at 3000'.

Sector	OBS.ID	Description	Elevation
RCF	UK0171A385F	Tower	591.00

7.7.5. Reversal

Orientation - 241°
Direction - Left
Outbound limit - 14.6D
Speed - 210Kts
Maximum Altitude 4000'

Sector	OBS.ID	Description	Elevation
Reversal	DEM_02-	Ground	498.82
	00002159		

7.7.6. No DME Procedure

This procedure has been removed so does not form part of this assessment and has not been considered.

7.7.7. Obstacle Free Zone

A number of frangible obstacles which penetrate the OFZ have been discounted.

OBS.ID	Description	OBS.ID	Description
13311	06_PAPI	13310	06_PAPI
13312	$06 _$PAPI	13313	06_PAPI
13315	24_PAPI	13316	24_PAPI
13317	$24 _P A P I$	13314	24_PAPI

7.7.8. Visual Segment Surface

There are no penetrations of the Visual Segment Surface.

7.8. LOC/DME RWY 24

Designer	Checker	AutoCAD File	
		$5248-$ EGPH - UTM84-30N	dwg

7.8.1. Procedure Overview

A 3.0° glide path and RDH $50 f t$ has been used.
DME I-TH is zero ranged to THR. See email correspondence for confirmation, which is located in the 'other' folder supplied as part of this submission.

7.8.2. Intermediate

The Intermediate Segment is 4.0NM long and is aligned with the final approach track. The Intermediate Fix (IF) is positioned at 13.0D. The MOCA is 800ft AMSL.

Sector	Min Alt	OBS.ID	Description	Elevation
Intermediate	$800(700)$	DEM_01-	Ground	71.15
		0015490		

7.8.3. Final

The Final Segment commences at the Final Approach Fix (FAF) where the nominal 3.0° glide path reaches 3000ft AMSL on the extended runway centreline, positioned at 9.0D 241°. The FAF will be at 3000 ft to align with the RNAV approaches.

LOC Minima

Aircraft Category	Published Minima	New CRM Minima	OBS.ID	Elevation
A - D	$540(440)$	$540(440)$	14187	89.13

7.8.4. Missed approach

The missed approach point is positioned at 1.0D.
Missed approach instructions:
'Climb straight ahead to 3000', then continue as directed.

Sector	OBS.ID	Description	Elevation
Missed Approach	UK0171R039F Control Tower	88.00	

The missed approach has been assessed out to 25NM from the ARP.

7.8.5. RCF and Reversal

The assessments for the above sectors are common for both the ILS and LOC procedures as detailed in sections 7.7.4 and 7.7.5.

7.8.6. No DME Procedure

This procedure has been removed so does not form part of this assessment and has not been considered.

7.8.7. Visual Segment Surface

There are no penetrations of the Visual Segment Surface.

7.9. RNAV(GNSS) RWY 24

Designer	Checker	AutoCAD File
		$5248-$ EGPH - UTM84-30N

7.9.1. Procedure Overview

This procedure is designed as an overlay of the existing ILS/DME RWY 24 procedure. It is not expected to be used as the primary approach procedure to this runway but would be used for training purposes or in situations when an aircraft is unable to fly the ILS/DME approach.

The platform altitude remains at 3000 ft .

7.9.2. Technical Detail

7.9.2.1. Intermediate Approach Segment

The procedure commences at ABSEK which is the IF. ABSEK is located 13.0 NM before the RWY 24 threshold on the runway centreline. Aircraft can reach ABSEK via the EDIBO 1C approach transition or by receiving vectors from ATC. ABSEK is a fly-by waypoint with an altitude restriction of "between 3000 and 4000 ". The intermediate approach segment is 4.0 NM long and terminates at PH 24 F .

7.9.2.2. Final Approach Segment

The final approach segment commences at PH24F which is the FAF. PH24F is located 9.0NM before the RWY 24 threshold on the runway centreline where the 3.0° VPA reaches an altitude of 3000 ft . PH24F is a fly-by waypoint with an altitude restriction of "at 3000". The final approach segment is 9.0NM long and terminates at RW24.

7.9.2.3. Missed Approach Segment

The missed approach segment commences at RW24 which is the MAPt. RW24 is located at the RWY 24 threshold. RW24 is a fly-over waypoint. The missed approach procedure has a maximum IAS of 210 kts .

The conventional radio communications failure instruction is "climb straight ahead to 3000, then turn right to NDB(L) EDN at 3000." The equivalent RNAV coding would be to have a CA leg to 3000 ft followed by a DF leg back to EDN with the turn direction set to right. However UK specific design criteria prohibit this coding due to the risk of aircraft turning in the wrong direction. An alternative missed approach coding was therefore required.

A standard RNAV missed approach might involve three fly-by waypoints with 90° turns creating a "box" that brings aircraft back to the intermediate approach fix. However this would require the downwind leg to be over 5.5NM from the runway centreline and would put aircraft directly over Falkirk. This could also lead to confusion for air traffic control as it would be completely different from the currently published missed approach.

A new design was therefore produced which emulated the conventional missed approach as closely as possible while complying with the CAA design requirements. The missed approach includes two additional waypoints which guarantee that aircraft will turn in the correct direction while keeping the turn point and track as similar as possible to the conventional procedure.

The first leg of the missed approach is a CF leg to PHM11 which has been placed 4.4NM beyond the RWY 24 threshold on the runway centreline. This is approximately 7.2NM from EDN which
provides adequate distance for the worst case turn to PHM12. PHM11 is a fly-over waypoint which ensures all aircraft travel far enough to ensure the remainder of the missed approach procedure is flyable.

This waypoint is followed by a CA leg to 3000 ft along the runway centreline to replicate the existing missed approach procedure. Any aircraft that reach 3000 ft prior to PHM11 would therefore execute a fly-over turn at PHM11. Any aircraft that are below 3000ft when they reach PHM11 would continue straight ahead until they reach 3000 ft .

The third leg is a DF leg to PHM12 which has been placed 4.0NM to the north of the runway centreline. PHM12 is a fly-by waypoint and ensures that all aircraft turn right towards the Firth of Forth before returning to the hold at EDN.

The final leg of the missed approach is a TF leg to EDN. EDN is a fly-over waypoint with an altitude restriction of "at 3000". Aircraft would then enter the EDN hold until receiving further instructions from ATC.

7.9.2.4. Visual Segment Surface

There are no penetrations of the Visual Segment Surface.

7.9.3. Minima

7.9.3.1. LNAV/VNAV

Category	OCA	Obstacle ID	Description	Elevation
Cat A	430 ft	14263	TREE OBST	105.14 m
Cat B	440 ft	14092	TREE OBST	88.35 m
Cat C	450 ft	14092	TREE OBST	88.35 m
Cat D	460 ft	14092	TREE OBST	88.35 m
7.9 .3 .2.	LNAV			
Category	MOCA	Obstacle ID	Description	Elevation
Cat A	540 ft	14187	TREE OBST	89.13 m
Cat B	540 ft	14187	TREE OBST	89.13 m
Cat C	540 ft	14187	TREE OBST	89.13 m
Cat D	540 ft	14187	TREE OBST	89.13 m

8. Holds

8.1. RNAV1 EDIBO

Designer	Checker	AutoCAD File
		$5248-$ EGPH - UTM84-30N

8.1.1. Procedure Overview

This is a new RNAV1 hold to replace the existing TWEED hold used for arrivals from the south.

8.1.2. Technical Detail

The hold is placed at the new waypoint EDIBO which has been designed to optimise the efficiency of the arrival and departure operations without adversely impacting adjacent aerodromes. The fix tolerance for a STAR within 30NM of the ARP has been used.

The right-hand hold has been aligned on a heading of 354° and has been constructed at FL70 (7000ft) and FL140 (14000ft). The upper limit of FL140 has been chosen as it is the maximum level at which a 1 minute hold should be promulgated according to PANS-OPS. The STARs inbound to the EDIBO hold have a level restriction of between FL70 and FL100 at EDIBO in order to ensure aircraft are able to adhere to the Continuous Descent Operation (CDO) guidelines beyond EDIBO. However, if ATC require aircraft to enter the EDIBO hold at levels above FL100 they will instruct aircraft to stop their descent at the appropriate level.

The hold has an outbound limit of 1 minute and a speed of 230KIAS. The protection area has been constructed to protect for entry along the holding axis only. Aircraft should only enter the EDIBO hold via the GEVEZ waypoint. Aircraft entering the hold from any other direction may exit the primary protection area while flying the hold entry.

8.1.3. Minima

As the lowest holding altitude of FL70 is above the 6000ft terrain safe level, an obstacle assessment has not been undertaken.

8.2. RNAV1 STIRA

Designer	Checker	AutoCAD File
		$5248-$ EGPH - UTM84-30N $\quad \mathrm{dwg}$

8.2.1. Procedure Overview

This is an RNAV1 overlay of the existing STIRA conventional hold used for arrivals from the north.

8.2.2. Technical Detail

The hold is placed at the published coordinates of STIRA. The fix tolerance for a STAR within 30NM of the ARP has been used.

The right-hand hold has been aligned with the inbound track from GRICE $\left(235^{\circ}\right)$ and has been constructed at FL70 (7000ft) and FL140 (14000ft). The upper limit of FL140 has been chosen as it is the maximum level at which a 1 minute hold should be promulgated according to PANS-OPS. The PTH 1E STAR inbound to the STIRA hold has a level restriction of at FL70 at STIRA in order to enforce the existing "expect" level on the current STIRA 1A STAR. However, if ATC require aircraft to enter the STIRA hold at levels above FL70 they will instruct aircraft to stop their descent at the appropriate level.

The hold has an outbound limit of 1 minute and a speed of 230KIAS. The protection area has been constructed to protect for entry along the holding axis only. Aircraft should only enter the STIRA hold via the GRICE waypoint. Aircraft entering the hold from any other direction may exit the primary protection area while flying the hold entry.

8.2.3. Minima

As the lowest holding altitude of FL70 is above the 6000ft terrain safe level, an obstacle assessment has not been undertaken.

8.3. RNP-APCH EDN

Designer	Checker	AutoCAD File
		5248 - EGPH - UTM84-30N

8.3.1. Procedure Overview

This is an RNP-APCH overlay of the existing EDN NDB conventional hold used for the missed approaches from runway 24.

8.3.2. Technical Detail

The hold is placed at the published coordinates of the EDN NDB. While the waypoint is within 15NM of the ARP, the fix tolerance for a missed approach waypoint outside 15 NM has been used as slow climbing aircraft may travel beyond 15NM from the ARP before reaching 3000ft and turning back to PHM12.

The left-hand hold has been aligned with the final approach track for runway $24\left(241^{\circ}\right)$ and has been constructed at 3000 ft with an outbound limit of 1 minute and a speed of 210KIAS. The protection area has been constructed to protect for omnidirectional entry.

8.3.3. Minima

LHA	MOCA	Obstacle ID	Description	Elevation
3000 ft	2700 ft	OSVM08488	Spot Height	493 m
3000 ft	2700 ft	1758	TRIG PILLAR OBST	493 m

Note: Both obstacles have exactly the same elevation and therefore generate the same MOCA. They both appear to reference a trig point on the top of a hill to the south-west of Swanston but as the points are 8.6 m apart and cannot be definitely tied to the same physical feature they have both been listed as the controlling obstacles.

8.4. RNP-APCH UW

Designer	Checker	AutoCAD File
\square		$5248-$ EGPH - UTM84-30N

8.4.1. Procedure Overview

This is an RNP-APCH overlay of the existing UW NDB conventional hold used for the missed approaches from runway 06.

8.4.2. Technical Detail

The hold is placed at the published coordinates of the UW NDB. While the waypoint is within 15NM of the ARP, the fix tolerance for a missed approach waypoint outside 15 NM has been used as slow climbing aircraft may travel beyond 15NM from the ARP before reaching 3000ft and turning back to PHMO2.

The right-hand hold has been aligned with the final approach track for runway $06\left(061^{\circ}\right)$ and has been constructed at 3000 ft with an outbound limit of 1 minute and a speed of 210KIAS. The protection area has been constructed to protect for omnidirectional entry.

8.4.3. Minima

LHA	MOCA	Obstacle ID	Description	Elevation
3000ft	2900 ft	OSVM08717	Spot Height - OSVM Spot Height	567 m

8.5. NDB(L) EDN

Designer	Checker	AutoCAD File
		$5248-$ EGPH - UTM84-30N

8.5.1. Procedure Overview

This is an existing EDN NDB conventional hold used for the missed approaches from runway 24.

8.5.2. Technical Detail

The hold is placed at the published coordinates of the EDN NDB.
The left-hand hold has been aligned with the final approach track for runway $24\left(241^{\circ}\right)$ and has been constructed at 3000 ft with an outbound limit of 1 minute and a speed of 210KIAS. The protection area has been constructed to protect for omnidirectional entry.

8.5.3. Minima

LHA	MOCA	Obstacle ID	Description	Elevation
3000ft	2900 ft	OSVM08479	Spot Height - OSVM Spot Height	579 m

8.6. NDB(L) UW

Designer	Checker	AutoCAD File
		$5248-$ EGPH - UTM84-30N

8.6.1. Procedure Overview

This is an existing UW NDB conventional hold used for the missed approaches from runway 06 .

8.6.2. Technical Detail

The hold is placed at the published coordinates of the UW NDB.
The right-hand hold has been aligned with the final approach track for runway $06\left(061^{\circ}\right)$ and has been constructed at 3000 ft with an outbound limit of 1 minute and a speed of 210KIAS. The protection area has been constructed to protect for omnidirectional entry.

8.6.3. Minima

LHA	MOCA	Obstacle ID	Description	Elevation
3000ft	3000 ft	UK0171A385F	Radion TV Tower	591 m

Appendix A - Navigation Infrastructure Assessment

APPENDIX C Detailed Assessment of Glasgow / Edinburgh / Prestwick RNAV 1 Replication Proposals

The DME/DME based RNAV1 position-fixing support within the Scottish TMA has been significantly optimised through the consideration of Dundonald and Green Lowther as future sites when compared against version 1 of this same document.

The analysis below focuses on the major airports within the TMA, namely Glasgow, Edinburgh and Prestwick, and identifies any sub-optimal DME/DME support if any provided to their published SID procedures.

Glasgow and Edinburgh have expressed their intention to redesign their procedures in order to take full benefit of the RNAV1 capabilities. Prestwick on the other hand, has intentions to use its existing procedures.

These procedures are currently promulgated based on conventional navigation however they are due in the short to medium term, to be replaced with RNAV 1 replications which will follow the same ground tracks. The analysis below can therefore be used to assess the RNAV 1 support for these future replications in the case of Prestwick and as guidance for the procedures redesign that Glasgow and Edinburgh are planning.

For reference, the requirement for an aircraft using an RNAV 1 SID to have an automatic runway update capability on their Inertial Navigation/Reference System (INS/IRS) is still assumed in this analysis. This provides the 3000ft minimum DME/DME coverage requirement.

Figure 30 -Figure 32 provide an illustration of the 2 D routings associated with current Glasgow, Edinburgh and Prestwick airport SID procedures, overlaid on the local DME/DME performance achieved at 3000ft for reference. Please note that Glasgow and Edinburgh procedures are based on replications of existing procedures. It is expected that a major redesign of these procedures will be conducted so these are only to be used as a reference.

Figure 30: Glasgow SID routings overlaid on local DME/DME performance at 3000 ft .
NOTE:子

Dundonald is the 'critical' DME;
Ø̋././. Talla is the 'critical' DME.
HH Turnberry is the 'critical' DME.
**** St. Abbs is the 'critical' DME.

Figure 31: Edinburgh SID routings overlaid on local DME/DME performance at 3000 ft .
NOTE: Glasgow is the 'critical' DME;
Dundonald is the 'critical' DME.

Figure 32: Prestwick SID routings overlaid on local DME/DME performance at 3000 ft .
NOTE: $\because \ddots \because$ D Dundonald is the 'critical' DME;

Figure 30 -Figure 32 show in general a good level of coverage and redundancy of DME/DME support supporting each of the SID procedures at Glasgow and Edinburgh airports, in terms of a 2D view, at 3000 ft , of the environment in the areas of interest. For a more detailed assessment, the DEMETER tool allows for a 3D approximately modelled profile of each procedure and also for a related assessment of performance considering variations in aircraft altitude throughout this profile. The detailed performance charts are not included here for simplicity, however a summary of the results obtained for both airports are given below in Table 5-Table 7 respectively. The key information given in each table is whether each procedure is 'supported' (by some level of DME/DME position-fix capability) for the entirety of its course, and also which DME beacons are identified as 'critical' in terms of areas of limited (Yellow) or no (Red) redundancy.

Procedure ID	Support		Critical DME			
CLYDE 3A	Full				TLA	
CLYDE 3B	Full				TLA	
FOYLE 3A	Full		Dundonald		TLA	
FOYLE 3B	Full		Dundonald		TLA	
LOMON 3A	Full			TLA		
LOMON 3B	Full				TLA	
LUSIV 1A	Full				TLA	

LUSIV 1B	Full				TLA	
NORBO 1H	Full				TLA	
NORBO 1J	Full				TLA	
PERTH 4A	Full		Dundonald	SAB	TLA	
PERTH 4B	Full		Dundonald	SAB	TLA	
ROBBO 2A	Full				TLA	
ROBBO 2B	Full				TLA	
TALLA 5A	Full				TLA	
TALLA 6B	Full				TLA	
TURNBERRY 3A	Full					
TURNBERRY 6B	Full		Dundonnald			TRN

Table 5: Level of DME/DME support and associated 'critical' navigation aids for Glasgow airport SIDs.
${ }^{(*)}$) NOTE: TALLA 6B - DME/DME position-fixing is not available along this SID until 3500ft in altitude which is 'late' in comparison with the standard 3000 ft achieved requirement.

Procedure ID	Coverage		Critical DME	
GOSAM 1C	Full		GOW	Dundonald
GOSAM 1D	Full		GOW	Dundonald
GRICE 3C	Full		GOW	
GRICE 4D	Full		GOW	
TALLA 5G	Full		GOW	
TALLA 6C	Full		GOW	
TALLA 6D	Full		GOW	

Table 6: Level of DME/DME support and associated 'critical' navigation aids for Edinburgh airport SIDs.

Procedure ID	Coverage		Critical DME	
NGY 1K	Full			TLA
NGY 1L	Full		Dundonald	
TRN 1K	Full		Dundonald	TLA
TRN 1L	Full		Dundonald	

Table 7: Level of DME/DME support and associated 'critical' navigation aids for Prestwick airport SIDs.
Table 5-Table 7 reflect the overall good nature of DME/DME coverage supporting the potential RNAV 1 SID procedures out of Prestwick, Edinburgh and Glasgow after considering the addition of Dundonald and Green Lowther DMEs in Scotland.

NATS Private

The consideration of these two navaids represents a considerable improvement with respect issue 1 of this document. All reported problems documented in the previous version are solved once these two navaids are included.

There are though still some areas of 'limited' redundancy along the procedures. These can be visualised as the patterned yellow areas in Figure 30 to Figure 32. Thus it is easy to see that there are only 4 'critical' navigational aids that contribute to the limited redundancy areas. These are Talla, Dundonald, Turnberry and Glasgow. It is worth to remark that these limited redundancy areas quickly disappear at altitudes greater than 3000', thus the procedures dependency on these 'critical' navaids is minimal.

The commonly accepted process in the UK to cater for 'critical' navigation aids is to make a specific procedure operationally unavailable should any navigational aid designated as critical to the procedure be out of service. This is usually managed by listing the facility on the appropriate SID procedure chart, which enables the availability of each procedure to be managed tactically.

Appendix B - Close-In Obstacles

SID close-in obstacles were found for runway 24 ; none for runway 06.

ID	Description	Lat	Long	Elev (m)	Elev (ft)
14708	TREE_OBST	555600.12N	0032431.59W	222.5	729.9
14707	TREE_OBST	555600.15N	0032429.65W	222.1	728.6
16111	TREE_OBST	555621.05N	0032358.78W	189.1	620.4
14681	TREE_OBST	555621.10 N	0032358.84W	188.5	618.5
12008	MAST_OBST	555618.20 N	0032402.41W	185.6	608.9
14679	TREE_OBST	555621.16 N	0032359.69W	178.8	586.7
14680	TREE_OBST	555621.47N	0032401.57W	176.6	579.5
14656	TREE_OBST	555631.85 N	0032406.83W	173.9	570.6
12001	LAMP_POST_OBST	555619.98 N	0032354.53W	173.4	568.8
12003	LAMP_POST_OBST	555620.06N	0032358.04W	172.4	565.6
14657	TREE_OBST	555631.30 N	0032405.98W	172.2	564.9
12002	LAMP_POST_OBST	555620.03 N	0032356.22W	172.0	564.1
13148	LAMP_POST_OBST	555620.65N	0032350.88W	170.8	560.4
13144	LAMP_POST_OBST	555620.83 N	0032357.19W	170.0	557.7
12004	LAMP_POST_OBST	555620.08 N	0032359.74W	169.5	556.0
13156	LAMP_POST_OBST	555620.91 N	0032358.94W	169.4	555.6
13145	LAMP_POST_OBST	555620.80 N	0032355.79W	169.2	555.2
13146	LAMP_POST_OBST	555620.79N	0032354.22W	169.1	554.9
13143	LAMP_POST_OBST	555621.07 N	0032359.19W	168.9	554.2
14678	TREE_OBST	555622.06 N	0032359.52W	167.6	549.7
14677	TREE_OBST	555622.47 N	0032358.24W	166.9	547.4
10719	LAMP_POST_OBST	555632.02N	0032413.84W	166.7	546.8
13155	LAMP_POST_OBST	555620.99 N	0032400.73W	166.1	545.0
10720	LAMP_POST_OBST	555630.80N	0032412.98W	165.9	544.1
14655	TREE_OBST	555628.36 N	0032407.25W	164.8	540.8
10721	LAMP_POST_OBST	555629.62 N	0032412.21W	164.8	540.6
10741	LAMP_POST_OBST	555620.50 N	0032402.66W	164.1	538.4
14666	TREE_OBST	555634.05N	0032353.50W	164.0	538.0
14658	TREE_OBST	555633.04 N	0032404.36W	163.9	537.9
14660	TREE_OBST	555632.66 N	0032402.47W	163.8	537.4
10738	LAMP_POST_OBST	555620.89 N	0032403.29W	163.3	535.8
10723	LAMP_POST_OBST	555628.41 N	0032411.42W	162.9	534.4

ID	Description	Lat	Long	Elev (m)	Elev (ft)
13139	LAMP_POST_OBST	555621.40 N	0032402.22 W	161.9	531.1
12018	LAMP_POST_OBST	555622.74 N	0032405.14 W	161.1	528.5
14671	TREE_OBST	555625.22 N	0032403.95 W	160.8	527.4
13137	LAMP_POST_OBST	555622.60 N	0032404.14 W	160.3	526.0
13138	LAMP_POST_OBST	555621.97 N	0032403.21 W	160.1	525.2
10799	ROAD_SIGN_OBST	555632.28 N	0032408.60 W	160.1	525.2
10800	ROAD_SIGN_OBST	555632.27 N	0032408.52 W	159.9	524.7
10797	ROAD_SIGN_OBST	555632.22 N	0032409.41 W	159.8	524.4
10796	ROAD_SIGN_OBST	555632.20 N	0032409.52 W	159.7	524.1
14667	TREE_OBST	555633.27 N	0032353.00 W	159.4	523.0
14663	TREE_OBST	555634.04 N	0032357.55 W	159.1	521.9
14659	TREE_OBST	555628.40 N	0032404.89 W	158.2	519.0
14674	TREE_OBST	555622.83 N	0032356.14 W	158.1	518.8
14662	TREE_OBST	555634.20 N	0032359.07 W	157.9	518.2
14664	TREE_OBST	555633.83 N	0032355.79 W	157.6	517.0
14668	TREE_OBST	555633.22 N	0032351.81 W	153.5	503.7
14665	TREE_OBST	555634.08 N	0032354.61 W	151.7	497.6
14673	TREE_OBST	555624.24 N	0032356.84 W	148.6	487.4
14669	TREE_OBST	555633.19 N	0032350.23 W	137.4	450.9

Appendix C - Draft Charts and Coding Tables

ACC	126.300	SCOTTISH CONTROL
ATIS*	131.350	EDINBURGH INFORMATION
APP	121.200^{*}	EDINBURGH APPROACH
TWR	$118.700,121.500^{*}$	EDINBURGH TOWER
RAD	$121.200,128.975^{*}$	EDINBURGH RADAR
* See EGPH AD 2.18 for full details		

GENERAL INFORMATION
1: Minimum climb gradient of $\mathbf{4 . 6} \%$ required until reaching $\mathbf{2 2 0 0}$ for obstacle clearance
2: SIDs reflect Noise Preferential Routeings. See EGPH AD 2.21 for Noise Abatement Procedures.
3: Climb gradient of 6.0% is required for ATC and airspace requirements.
4: Adhere to maximum speed limits where specified by waypoint constraints
5: Maximum 250 KIAS below FL100 unless authorised by ATC
6: Close-in obstacles exist for RWY 24 departures. See Aerodrome Obstacle Chart and EGPH AD 2.10 Aerodrome Obstacles
7: En route cruising levels will be allocated after take-off by 'Scotish Control'. Report callsign, SID designator, current altitude and cleared
altitude on first contact with 'Scottish Control'.

ADDITIONAL RNAV DATA

1: DME/DME only procedure: Procedure not available if GOW DME is u/s
2: RNAV1 SIDs are available only for approved aircraft that are either GNSS equipped or that have DME/DME and INS/IRU with automatic runway updating capability.

Standard Instrument Departure Coding Tables

Edinburgh Runway 24 EVTOL 1 C

Designator	Sequence Number	Path Terminator	Waypoint Name	Waypoint Co-ordinates	Fly-over	Course Track ${ }^{\circ} \mathrm{M}$ (${ }^{\circ} \mathrm{T}$)	Magnetic Variation	Distance (NM)	Turn Direction	Level Constraint	Speed Constraint	Navigation Performance
EVTOL 1C	001	CA	-	-	-	$\begin{gathered} 241^{\circ} \\ \left(238.8^{\circ}\right) \end{gathered}$	-2.0	-	-	636	-	RNAV 1
EVTOL 1C	002	CF	PHW01	$\begin{gathered} \hline 555515.02 \mathrm{~N} \\ 0032729.97 \mathrm{~W} \\ \hline \end{gathered}$	-	$\begin{gathered} 241^{\circ} \\ \left(238.8^{\circ}\right) \\ \hline \end{gathered}$	-2.0	2.4	LEFT	-	-200	RNAV 1
EVTOL 1C	003	TF	PHS14	$\begin{gathered} \hline 554710.23 \mathrm{~N} \\ 0032527.78 \mathrm{~W} \\ \hline \end{gathered}$	-	$\begin{gathered} 174^{\circ} \\ \left(171.9^{\circ}\right) \end{gathered}$	-2.0	8.2	-	+4000	-250	RNAV 1
EVTOL 1C	004	TF	EVTOL	$\begin{gathered} 554127.28 \mathrm{~N} \\ 0032401.86 \mathrm{~W} \end{gathered}$	-	$\begin{gathered} 174^{\circ} \\ \left(171.9^{\circ}\right) \end{gathered}$	-2.0	5.8	-	6000	-	RNAV 1

5248 - Edinburgh ACP Report 4.0

WAYPOINTS

PHW24 555304.49N 0033342.33W PHS08 554817.49N 0033107.85W ARLER $\quad 554452.31 \mathrm{~N} 0032915.68 \mathrm{~W}$

ACC 126.300 SCOTTISH CONTROL ATIS* 131.350 EDINBURGH INFORMATION APP 121.200^{*} EDINBURGH APPROACH TWR $118.700,121.500^{*}$ EDINBURGH TOWER RAD $121.200,128.975^{*}$ EDINBURGH RADAR See EGPH AD 2.18 for full details		

\qquad RWY 24

GENERAL INFORMATION
1: Minimum climb gradient of $\mathbf{3 . 8 \%}$ required until reaching 1440 for obstacle clearance
2: SIDs reflect Noise Preferential Routeings. See EGPH AD 2.21 for Noise Abatement Procedures.
3: Climb gradient up to 7.1% is required for ATC and airspace requirements
4: Adhere to maximum speed limits where specified by waypoint constraints
5: Maximum 250 KIAS below FL100 unless authorised by ATC
6: Close-in obstacles exist for RWY 24 departures. See Aerodrome Obstacle Chart and EGPH AD 2.10 Aerodrome Obstacles
7: En route cruising levels will be allocated after take-off by 'Scotish Control'. Report callsign, SID designator, current altitude and cleared
altitude on first contact with 'Scottish Control'.
ADDITIONAL RNAV DATA
1/ DME/DME only procedure: Procedure not available if GOW DME is u / s
2/ RNAV1 SIDs are available only for approved aircraft that are either GNSS equipped or that have DME/DME and INS/IRU with automatic runway updating capability.

Edinburgh Runway 24 ARLER 1C

Designator	Sequence Number	Path Terminator	Waypoint Name	Waypoint Co-ordinates	Fly-over	Course Track ${ }^{\circ} \mathrm{M}$ (${ }^{\circ} \mathrm{T}$)	Magnetic Variation	Distance (NM)	Turn Direction	Level Constraint	Speed Constraint	Navigation Performance
ARLER 1C	001	CF	PHW24	$\begin{gathered} \hline 555304.49 \mathrm{~N} \\ 0033342.33 \mathrm{~W} \\ \hline \end{gathered}$	Y	$\begin{gathered} 240^{\circ} \\ \left(238.4^{\circ}\right) \end{gathered}$	-2.0	6.6	LEFT	+2500	-220	RNAV 1
ARLER 1C	002	DF	PHSO8	$\begin{gathered} \hline 554817.49 \mathrm{~N} \\ 0033107.85 \mathrm{~W} \end{gathered}$	-	-	-2.0	-	-	+4000	-250	RNAV 1
ARLER 1C	003	TF	ARLER	$\begin{gathered} 554452.31 \mathrm{~N} \\ 0032915.68 \mathrm{~W} \end{gathered}$	-	$\begin{array}{c\|} \hline 165^{\circ} \\ \left(162.9^{\circ}\right) \\ \hline \end{array}$	-2.0	3.6	-	6000	-	RNAV 1

5248 - Edinburgh ACP Report 4.0

DRAFT CHART:
 NOT FOR FLIGHT

WAYPOINTS

PHW06 555417.62N 0033018.55W
PHW28 555326.54N 0033857.78W
PHW30 555155.00N 0035412.23W
$\begin{array}{ll}\text { PHWVIX } & 555049.76 \mathrm{~N} 0040450.12 \mathrm{~W}\end{array}$

MAVIX 1C RWY 24	Climb straight ahead to PHW06, right to PHW28 - PHW30-MAVIX	Z500

ACC	124.825	SCOTTISH CONTROL
ATIS*	131.350	EDINBURGH INFORMATION
APP	121.200^{*}	EDINBURGH APPROACH
TWR	$118.700,121.500^{*}$	EDINBURGH TOWER
RAD	$121.200,128.975^{*}$	EDINBURGH RADAR
*See EGPH AD 2.18 for full details		

GENERAL INFORMATION
1: SIDs reflect Noise Preferential Routeings. See EGPH AD 2.21 for Noise Abatement Procedures.
2: Climb gradient up to 9.1% is required for ATC and airspace requirements
3: Adhere to maximum speed limits where specified by waypoint constraints
4: Maximum 250 KIAS below FL100 unless authorised by ATC
5: Close-in obstacles exist for RWY 24 departures. See Aerodrome Obstacle Chart and EGPH AD 2.10 Aerodrome Obstacles
6: En route cruising levels will be allocated after take-off by 'Scotish Control'. Report callsign, SID designator, current altitude and cleared
altitude on first contact with 'Scottish Control'.
ADDITIONAL RNAV DATA
1: DME/DME only procedure: Procedure not available if GOW DME is u / s
2: RNAV1 SIDs are available only for approved aircraft that are either GNSS equipped or that have DME/DME and INS/IRU with automatic runway updating capability.

Edinburgh Runway 24 MAVIX 1C

Option 1

Designator	Sequence Number	Path Terminator	Waypoint Name	Waypoint Co-ordinates	Fly-over	Course Track ${ }^{\circ} \mathrm{M}$ (${ }^{\circ} \mathrm{T}$)	Magnetic Variation	Distance (NM)	Turn Direction	Level Constraint	Speed Constraint	Navigation Performance
MAVIX 1C	001	CF	PHW06	$\begin{gathered} \hline 555417.62 \mathrm{~N} \\ 0033018.55 \mathrm{~W} \end{gathered}$	-	$\begin{gathered} 241^{\circ} \\ \left(238.8^{\circ}\right) \\ \hline \end{gathered}$	-2.0	4.3	RIGHT	-	-220	RNAV 1
MAVIX 1C	002	TF	PHW28	$\begin{gathered} \hline 555326.54 \mathrm{~N} \\ 0033857.78 \mathrm{~W} \\ \hline \end{gathered}$	-	$\begin{gathered} 262^{\circ} \\ \left(260.1^{\circ}\right) \\ \hline \end{gathered}$	-2.0	4.9	-	+3000	-250	RNAV 1
MAVIX 1C	003	TF	PHW30	$\begin{gathered} \hline 555155.00 \mathrm{~N} \\ 0035412.23 \mathrm{~W} \end{gathered}$	-	$\begin{gathered} 262^{\circ} \\ \left(260.0^{\circ}\right) \\ \hline \end{gathered}$	-2.0	8.7	-	+FL90	-	RNAV 1
MAVIX 1C	004	TF	MAVIX	$\begin{gathered} \hline 555049.76 \mathrm{~N} \\ 0040450.12 \mathrm{~W} \\ \hline \end{gathered}$	-	$\begin{gathered} 262^{\circ} \\ \left(259.8^{\circ}\right) \\ \hline \end{gathered}$	-2.0	6.1	-	FL100	-	RNAV 1

5248 - Edinburgh ACP Report 4.0

DRAFT CHART:
 NOT FOR FLIGHT

WAYPOINTS

PHW06 555417.62N 0033018.55W

| PHW06 555417.62 N 0033018.55 W |
| :--- | :--- |
| PHW28 |

$\begin{array}{ll}\text { PHW28 } & 555326.54 \mathrm{~N} 0033857.78 \mathrm{~W} \\ \text { PHW30 } & 555155.00 \mathrm{~N} 0035412.23 \mathrm{~W}\end{array}$
$\begin{array}{ll}\text { MAVIX } & 555049.76 \mathrm{~N} 0040450.12 \mathrm{~W}\end{array}$

MAVIX 1C RWY 24	Climb straight ahead to PHW06, right to PHW28 - PHW30-MAVIX	Z500

ACC	124.825	SCOTTISH CONTROL
ATIS*	131.350	EDINBURGH INFORMATION
APP	121.200^{*}	EDINBURGH APPROACH
TWR	$118.700,121.500^{*}$	EDINBURGH TOWER
RAD	$121.200,128.975^{*}$	EDINBURGH RADAR
*See EGPH AD 2.18 for full details		

GENERAL INFORMATION
1: SIDs reflect Noise Preferential Routeings. See EGPH AD 2.21 for Noise Abatement Procedures.
2: Climb gradient up to 5.4% is required for ATC and airspace requirements
3: Adhere to maximum speed limits where specified by waypoint constraints
4: Maximum 250 KIAS below FL100 unless authorised by ATC
5: Close-in obstacles exist for RWY 24 departures. See Aerodrome Obstacle Chart and EGPH AD 2.10 Aerodrome Obstacles
6: En route cruising levels will be allocated after take-off by 'Scotish Control'. Report callsign, SID designator, current altitude and cleared
altitude on first contact with 'Scottish Control'.
ADDITIONAL RNAV DATA
1: DME/DME only procedure: Procedure not available if GOW DME is u/s
2: RNAV1 SIDs are available only for approved aircraft that are either GNSS equipped or that have DME/DME and INS/IRU with automatic runway updating capability.

Edinburgh Runway 24 MAVIX 1C

Option 2

Designator	Sequence Number	Path Terminator	Waypoint Name	Waypoint Co-ordinates	Fly-over	Course Track ${ }^{\circ} \mathrm{M}$ (${ }^{\circ} \mathrm{T}$)	Magnetic Variation	Distance (NM)	Turn Direction	Level Constraint	Speed Constraint	Navigation Performance
MAVIX 1C	001	CF	PHW06	$\begin{gathered} \hline 555417.62 \mathrm{~N} \\ 0033018.55 \mathrm{~W} \end{gathered}$	-	$\begin{gathered} 241^{\circ} \\ \left(238.8^{\circ}\right) \\ \hline \end{gathered}$	-2.0	4.3	RIGHT	-	-220	RNAV 1
MAVIX 1C	002	TF	PHW28	$\begin{gathered} \hline 555326.54 \mathrm{~N} \\ 0033857.78 \mathrm{~W} \\ \hline \end{gathered}$	-	$\begin{gathered} 262^{\circ} \\ \left(260.1^{\circ}\right) \\ \hline \end{gathered}$	-2.0	4.9	-	+3000	-250	RNAV 1
MAVIX 1C	003	TF	PHW30	$\begin{gathered} \hline 555155.00 \mathrm{~N} \\ 0035412.23 \mathrm{~W} \end{gathered}$	-	$\begin{gathered} 262^{\circ} \\ \left(260.0^{\circ}\right) \\ \hline \end{gathered}$	-2.0	8.7	-	6000	-	RNAV 1
MAVIX 1C	004	TF	MAVIX	$\begin{gathered} \hline 555049.76 \mathrm{~N} \\ 0040450.12 \mathrm{~W} \\ \hline \end{gathered}$	-	$\begin{gathered} 262^{\circ} \\ \left(259.8^{\circ}\right) \\ \hline \end{gathered}$	-2.0	6.1	-	6000	-	RNAV 1

5248 - Edinburgh ACP Report 4.0

DRAFT CHART:
 NOT FOR FLIGHT

WAYPOINTS

PHW10 555500.51N 0032812.60W
PHW27 555708.41N 0033948.87W
PHW12 555758.42N 0034423.07W
$\begin{array}{ll}\text { PHW12 } & 55558.42 \mathrm{~N} 0035416.51 \mathrm{~W} \\ \text { PHW31 } & 555701.20 \mathrm{~N} 003\end{array}$
$\begin{array}{ll}\text { PHW31 } & 555701.20 \mathrm{~N} 0035416.51 \mathrm{~W} \\ \text { LIKLA } & 555529.90 \mathrm{~N} 0040848.96 \mathrm{~W}\end{array}$

LIKLA 1C	Climb straight ahead to 650, continue ahead to PHW10, RWY 24 right to PHW27 - PHW12, left to PHW31 - LIKLA	N537 Between the hours of 06:00 and 23:00 only (one hour earlier in the summer).

ACC 124.825 SCOTTISH CONTROL ATIS* 131.350 EDINBURGH INFORMATION TWR $118.700,121.500^{*}$ EAD EDINBURGRGH TOWER * See EGPH AD 2.18 for full details 		

GENERAL INFORMATION
1: SIDs reflect Noise Preferential Routeings. See EGPH AD 2.21 for Noise Abatement Procedures.
2: Climb gradient up to 9.0% is required for ATC and airspace requirements
3: Adhere to maximum speed limits where specified by waypoint constraints
4: Maximum 250 KIAS below FL100 unless authorised by ATC
5: Close-in obstacles exist for RWY 24 departures. See Aerodrome Obstacle Chart and EGPH AD 2.10 Aerodrome Obstacles
6: En route cruising levels will be allocated after take-off by 'Scotish Control'. Report callsign, SID designator, current altitude and cleared
altitude on first contact with 'Scottish Control'.
ADDITIONAL RNAV DATA
1: DME/DME only procedure: Procedure not available if GOW DME is u / s
2: RNAV1 SIDs are available only for approved aircraft that are either GNSS equipped or that have DME/DME and INS/IRU with automatic runway updating capability.

Standard Instrument Departure Coding Tables

Edinburgh Runway 24 LIKLA 1 C

Option 1

Designator	Sequence Number	Path Terminator	Waypoint Name	Waypoint Co-ordinates	Fly-over	Course Track ${ }^{\circ} \mathrm{M}$ (${ }^{\circ} \mathrm{T}$)	Magnetic Variation	Distance (NM)	Turn Direction	Level Constraint	Speed Constraint	Navigation Performance
LIKLA 1C	001	CA	-	-	-	$\begin{gathered} 241^{\circ} \\ \left(238.8^{\circ}\right) \end{gathered}$	-2.0	-	-	650	-	RNAV 1
LIKLA 1C	002	CF	PHW10	$\begin{gathered} \hline 555500.51 \mathrm{~N} \\ 0032812.60 \mathrm{~W} \\ \hline \end{gathered}$	-	$\begin{gathered} 241^{\circ} \\ \left(238.8^{\circ}\right) \\ \hline \end{gathered}$	-2.0	2.9	RIGHT	-	-220	RNAV 1
LIKLA 1C	003	TF	PHW27	$\begin{gathered} \hline 555708.41 \mathrm{~N} \\ 0033948.87 \mathrm{~W} \\ \hline \end{gathered}$	-	$\begin{gathered} 290^{\circ} \\ \left(288.2^{\circ}\right) \\ \hline \end{gathered}$	-2.0	6.9	-	+3000	-250	RNAV 1
LIKLA 1C	004	TF	PHW12	$\begin{gathered} 555758.42 \mathrm{~N} \\ 0034423.07 \mathrm{~W} \\ \hline \end{gathered}$	-	$\begin{gathered} 290^{\circ} \\ \left(288^{\circ}\right) \end{gathered}$	-2.0	2.7	LEFT	+4000	-	RNAV 1
LIKLA 1C	005	TF	PHW31	$\begin{gathered} 555658.92 \mathrm{~N} \\ 0035416.46 \mathrm{~W} \\ \hline \end{gathered}$	-	$\begin{gathered} 262^{\circ} \\ \left(259.9^{\circ}\right) \\ \hline \end{gathered}$	-2.0	5.6	-	+FL90	-	RNAV 1
LIKLA 1C	006	TF	LIKLA	$\begin{gathered} \hline 555529.90 \mathrm{~N} \\ 0040848.96 \mathrm{~W} \end{gathered}$	-	$\begin{gathered} 262^{\circ} \\ \left(259.8^{\circ}\right) \\ \hline \end{gathered}$	-2.0	8.3	-	FL100	-	RNAV 1

5248 - Edinburgh ACP Report 4.0

LIKLA 1C	Climb straight ahead to 650, continue ahead to RWY 24 PHW10, right to PHW27-PHW12, left to PHW31 - LIKLA	N537 Between the hours of 06:00 and 23:00 only (one hour earlier in the summer).

ACC	124.825	SCOTTISH CONTROL
ATIS*	131.350	EDINBURGH INFORMATION
APP	121.200^{*}	EDINBURGH APPROACH
TWR	$118.700,121.500^{*}$	EDINBURGH TOWER
RAD	$121.200,128.975^{*}$	EDINBURGH RADAR
* See EGPH AD 2.18 for full details		

Edinburgh Runway 24 LIKLA 1 C
Option 2

Designator	Sequence Number	Path Terminator	Waypoint Name	Waypoint Co-ordinates	Fly-over	Course Track ${ }^{\circ} \mathrm{M}$ (${ }^{\circ} \mathrm{T}$)	Magnetic Variation	Distance (NM)	Turn Direction	Level Constraint	Speed Constraint	Navigation Performance
LIKLA 1C	001	CA	-	-	-	$\begin{gathered} 241^{\circ} \\ \left(238.8^{\circ}\right) \\ \hline \end{gathered}$	-2.0	-	-	650	-	RNAV 1
LIKLA 1C	002	CF	PHW10	$\begin{gathered} 555500.51 \mathrm{~N} \\ 0032812.60 \mathrm{~W} \end{gathered}$	-	$\begin{gathered} 241^{\circ} \\ \left(238.8^{\circ}\right) \\ \hline \end{gathered}$	-2.0	2.9	RIGHT	-	-220	RNAV 1
LIKLA 1C	003	TF	PHW27	$\begin{gathered} \hline 555708.41 \mathrm{~N} \\ 0033948.87 \mathrm{~W} \\ \hline \end{gathered}$	-	$\begin{gathered} 290^{\circ} \\ \left(288.2^{\circ}\right) \\ \hline \end{gathered}$	-2.0	6.9	-	+3000	-250	RNAV 1
LIKLA 1C	004	TF	PHW12	$\begin{gathered} 555758.42 \mathrm{~N} \\ 0034423.07 \mathrm{~W} \end{gathered}$	-	$\begin{gathered} 290^{\circ} \\ \left(288^{\circ}\right) \\ \hline \end{gathered}$	-2.0	2.7	LEFT	+4000	-	RNAV 1
LIKLA 1C	005	TF	PHW31	$\begin{gathered} \hline 555658.92 \mathrm{~N} \\ 0035416.46 \mathrm{~W} \\ \hline \end{gathered}$	-	$\begin{gathered} 262^{\circ} \\ \left(259.9^{\circ}\right) \\ \hline \end{gathered}$	-2.0	5.6	-	6000	-	RNAV 1
LIKLA 1C	006	TF	LIKLA	$\begin{gathered} 555529.90 \mathrm{~N} \\ 0040848.96 \mathrm{~W} \\ \hline \end{gathered}$	-	$\begin{gathered} 262^{\circ} \\ \left(259.8^{\circ}\right) \\ \hline \end{gathered}$	-2.0	8.3	-	6000	-	RNAV 1

5248 - Edinburgh ACP Report 4.0

DRAFT CHART:
 NOT FOR FLIGHT


```
GRICE 4C Climb straight ahead to 650, continue ahead to PHW15, N560 via FOYLE, P600
RWY 24 right direct to PHW26 to PHN19 - PHN18 - GRICE

1: SIDs reflect Noise Preferential Routeings. See EGPH AD 2.21 for Noise Abatement Procedures.
2: Climb gradient up to \(6.4 \%\) is required for ATC and airspace requirements
3: Adhere to maximum speed limits where specified by waypoint constraints
4: Maximum 250 KIAS below FL100 unless authorised by ATC
5: Close-in obstacles exist for RWY 24 departures. See Aerodrome Obstacle Chart and EGPH AD 2.10 Aerodrome Obstacles
6: En route cruising levels will be allocated after take-off by 'Scotish Control'. Report callsign, SID designator, current altitude and cleared
altitude on first contact with 'Scottish Control'.
ADDITIONAL RNAV DATA
1: DME/DME only procedure: Procedure not available if GOW DME is u/s
2: RNAV1 SIDs are available only for approved aircraft that are either GNSS equipped or that have DME/DME and INS/IRU with automatic runway updating capability

\section*{Standard Instrument Departure Coding Tables}

Edinburgh Runway 24 GRICE 4C
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Designator & \begin{tabular}{l}
Sequence \\
Number
\end{tabular} & Path Terminator & \begin{tabular}{l}
Waypoint \\
Name
\end{tabular} & Waypoint Co-ordinates & Fly-over & Course Track \({ }^{\circ} \mathrm{M}\) ( \({ }^{\circ} \mathrm{T}\) ) & \begin{tabular}{l}
Magnetic \\
Variation
\end{tabular} & Distance (NM) & Turn Direction & Level Constraint & Speed Constraint & \begin{tabular}{l}
Navigation \\
Performance
\end{tabular} \\
\hline GRICE 4C & 001 & CA & - & - & - & \[
\begin{gathered}
241^{\circ} \\
\left(238.8^{\circ}\right)
\end{gathered}
\] & -2.0 & - & - & 650 & - & RNAV 1 \\
\hline GRICE 4C & 002 & CF & PHW15 & \[
\begin{gathered}
\hline 555559.91 \mathrm{~N} \\
0032517.89 \mathrm{~W} \\
\hline
\end{gathered}
\] & Y & \[
\begin{gathered}
241^{\circ} \\
\left(238.8^{\circ}\right) \\
\hline
\end{gathered}
\] & -2.0 & 1.0 & RIGHT & - & - & RNAV 1 \\
\hline GRICE 4C & 003 & DF & PHW26 & \[
\begin{gathered}
555956.23 \mathrm{~N} \\
0032944.31 \mathrm{~W}
\end{gathered}
\] & - & - & -2.0 & - & - & - & -220 & RNAV 1 \\
\hline GRICE 4C & 004 & TF & PHN19 & \[
\begin{gathered}
\hline 560430.17 \mathrm{~N} \\
0033406.49 \mathrm{~W} \\
\hline
\end{gathered}
\] & - & \[
\begin{gathered}
334^{\circ} \\
\left(331.8^{\circ}\right) \\
\hline
\end{gathered}
\] & -2.0 & 5.2 & - & +4000 & -250 & RNAV 1 \\
\hline GRICE 4C & 005 & TF & PHN18 & \[
\begin{gathered}
\hline 560700.71 \mathrm{~N} \\
0033631.07 \mathrm{~W} \\
\hline
\end{gathered}
\] & - & \[
\begin{gathered}
334^{\circ} \\
\left(331.8^{\circ}\right) \\
\hline
\end{gathered}
\] & -2.0 & 2.9 & - & +4500 & - & RNAV 1 \\
\hline GRICE 4C & 006 & TF & GRICE & \[
\begin{gathered}
\hline 561148.00 \mathrm{~N} \\
0034107.79 \mathrm{~W} \\
\hline
\end{gathered}
\] & - & \[
\begin{gathered}
334^{\circ} \\
\left(331.8^{\circ}\right) \\
\hline
\end{gathered}
\] & -2.0 & 5.4 & - & 6000 & - & RNAV 1 \\
\hline
\end{tabular}

5248 - Edinburgh ACP Report 4.0


\section*{WAYPOINTS}

PHW15
PHNO9
PHN09
PHN21
PHE33
PHE50
555559.91N 0032517.89W
560107.32 N 0032437.40 W 560107.32 N 0032437.40 W
560051.50 N 0031917.81 W 560051.50N 0031917.81W 560018.44 N 0030824.19 W
555934.65 N 0025426.84 W 555934.65N 0025426.84W
\begin{tabular}{|l|c|l|}
\hline ACC & 124.500 & SCOTTISH CONTROL \\
\hline ATIS* & 131.350 & EDINBURGH INFORMATION \\
\hline APP & \(121.200^{*}\) & EDINBURGH APPROACH \\
\hline TWR & \(118.700,121.500^{*}\) & EDINBURGH TOWER \\
\hline RAD & \(121.200,128.975^{*}\) & EDINBURGH RADAR \\
\hline \multicolumn{3}{|c|}{ * See EGPH AD 2.18 for full details } \\
\hline
\end{tabular}
\begin{tabular}{|lll|}
\hline VOSNE 1C & Climb straight ahead to 650, continue ahead to & Z506 \\
RWY 24 & PHW15, right direct to PHNO9 to PHN21 - PHE33 - & \begin{tabular}{l} 
Between the hours of 06:00 \\
and 14:00 on weekdays \\
only (one hour earlier in the \\
summer).
\end{tabular} \\
& PHE50, right to VOSNE. & \\
\hline
\end{tabular}

GENERAL INFORMATION
1: SIDs reflect Noise Preferential Routeings. See EGPH AD 2.21 for Noise Abatement Procedures,
2: Climb gradient up to \(13.4 \%\) may be required for ATC and airspace requirements.
3: Adhere to maximum speed limits where specified by waypoint constraints
3: Adhere to maximum speed limits where specified by waypo
5: Close-in obstacles exist for RWY 24 departures. See Aerodrome Obstacle Chart and EGPH AD 2.10 Aerodrome Obstacles
6: En route cruising levels will be allocated after take-off by 'Scotish Control'. Report callsign, SID designator, current altitude and cleared altitude on first contact with 'Scottish Control'.

ADDITIONAL RNAV DATA
1: DME/DME only procedure: Procedure not available if GOW DME is \(\mathrm{u} / \mathrm{s}\)
2: RNAV1 SIDs are available only for approved aircraft that are either GNSS equipped or that have DME/DME and INS/IRU with automatic runway updating capability.

\section*{Standard Instrument Departure Coding Tables}

Edinburgh Runway 24 VOSNE 1 C
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Designator & \begin{tabular}{l}
Sequence \\
Number
\end{tabular} & Path Terminator & Waypoint Name & Waypoint Co-ordinates & Fly-over & Course Track \({ }^{\circ} \mathrm{M}\) ( \({ }^{\circ} \mathrm{T}\) ) & \begin{tabular}{l}
Magnetic \\
Variation
\end{tabular} & \begin{tabular}{l}
Distance \\
(NM)
\end{tabular} & Turn Direction & Level Constraint & Speed Constraint & Navigation Performance \\
\hline VOSNE 1C & 001 & CA & - & - & - & \[
\begin{gathered}
241^{\circ} \\
\left(238.8^{\circ}\right) \\
\hline
\end{gathered}
\] & -2.0 & - & - & 650 & - & RNAV 1 \\
\hline VOSNE 1C & 002 & CF & PHW15 & \[
\begin{gathered}
\hline 555559.91 \mathrm{~N} \\
0032517.89 \mathrm{~W} \\
\hline
\end{gathered}
\] & Y & \[
\begin{gathered}
241^{\circ} \\
\left(238.8^{\circ}\right) \\
\hline
\end{gathered}
\] & -2.0 & 1.0 & RIGHT & - & - & RNAV 1 \\
\hline VOSNE 1C & 003 & DF & PHN09 & \[
\begin{gathered}
\hline 560107.32 \mathrm{~N} \\
0032437.40 \mathrm{~W} \\
\hline
\end{gathered}
\] & - & - & -2.0 & - & - & +4000 & -220 & RNAV 1 \\
\hline VOSNE 1C & 004 & TF & PHN21 & \[
\begin{gathered}
\hline 560051.50 \mathrm{~N} \\
0031917.81 \mathrm{~W} \\
\hline
\end{gathered}
\] & - & \[
\begin{gathered}
097^{\circ} \\
\left(095.0^{\circ}\right) \\
\hline
\end{gathered}
\] & -2.0 & 3.0 & - & - & -250 & RNAV 1 \\
\hline VOSNE 1C & 005 & TF & PHE33 & \[
\begin{gathered}
560018.44 \mathrm{~N} \\
0030824.19 \mathrm{~W}
\end{gathered}
\] & - & \[
\begin{gathered}
097^{\circ} \\
\left(095.1^{\circ}\right) \\
\hline
\end{gathered}
\] & -2.0 & 6.1 & - & +FL90 & - & RNAV 1 \\
\hline VOSNE 1C & 006 & TF & PHE50 & \[
\begin{gathered}
555934.65 \mathrm{~N} \\
0025426.84 \mathrm{~W} \\
\hline
\end{gathered}
\] & - & \[
\begin{gathered}
097^{\circ} \\
\left(095.2^{\circ}\right) \\
\hline
\end{gathered}
\] & -2.0 & 7.9 & RIGHT & +FL110 & - & RNAV 1 \\
\hline VOSNE 1C & 007 & TF & VOSNE & \[
\begin{gathered}
555125.28 \mathrm{~N} \\
0025549.51 \mathrm{~W}
\end{gathered}
\] & - & \[
\begin{gathered}
187^{\circ} \\
\left(185.4^{\circ}\right) \\
\hline
\end{gathered}
\] & -2.0 & 8.2 & - & FL150 & - & RNAV 1 \\
\hline
\end{tabular}

5248 - Edinburgh ACP Report 4.0


MAX 250KIAS

\begin{tabular}{|l|c|l|}
\hline \multicolumn{3}{|l|}{\begin{tabular}{|l|c|l|}
\hline ACC & 124.825 & SCOTTISH CONTROL \\
\hline ATIS* & 131.350 & EDINBURGH INFORMATION \\
\hline APP & \(121.200^{*}\) & EDINBURGH APPROACH \\
\hline TWR & \(118.700,121.500^{*}\) & EDINBURGH TOWER \\
\hline RAD & \(121.200,128.975^{*}\) & EDINBURGH RADAR \\
\hline \multicolumn{4}{|c|}{ *See EGPH AD 2.18 for full details } \\
\hline
\end{tabular}} \\
\hline
\end{tabular}
\begin{tabular}{|lll}
\hline EMJEE 1D & Climb straight ahead to PHE35 - upon reaching 636, turn left, & \begin{tabular}{l} 
N537, Z500 \\
RWY 06
\end{tabular} \\
& direct to PHE37, left direct to PHN11, right to PHW17, left to \\
EMJEE. & \begin{tabular}{l} 
Between the hours of 06:00 \\
and 23:00 only (one hour \\
earlier in the summer)
\end{tabular} \\
\hline
\end{tabular}

\section*{GENERAL INFORMATION}

1: Minimum climb gradient of \(3.9 \%\) required until reaching 636 for obstacle clearance
2: SIDs reflect Noise Preferential Routeings. See EGPH AD 2.21 for Noise Abatement Procedures.
3: Climb gradient up to \(14.0 \%\) is required for ATC and airspace requirements
4: Adhere to maximum speed limits where specified by waypoint constraints
5: Maximum 250 KIAS below FL100 unless authorised by ATC
5: Maximum 250 KIAS below FL100 unless authorised by ATC
6: En route cruising levels will be allocated after take-off by 'Scotish Control'. Report callsign, SID designator, current altitude and cleared
altitude on first contact with 'Scottish Control'.
ADDITIONAL RNAV DATA
1: DME/DME only procedure: Procedure not available if GOW DME is \(\mathrm{u} / \mathrm{s}\)
2: RNAV1 SIDs are available only for approved aircraft that are either GNSS equipped or that have DME/DME and INS/IRU with automatic runway updating capability.

\section*{Edinburgh Runway 06 EMJEE 1D}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Designator & \begin{tabular}{l}
Sequence \\
Number
\end{tabular} & Path Terminator & \begin{tabular}{l}
Waypoint \\
Name
\end{tabular} & Waypoint Co-ordinates & Fly-over & Course Track \({ }^{\circ} \mathrm{M}\) ( \({ }^{\circ} \mathrm{T}\) ) & \begin{tabular}{l}
Magnetic \\
Variation
\end{tabular} & \begin{tabular}{l}
Distance \\
(NM)
\end{tabular} & Turn Direction & Level Constraint & Speed Constraint & Navigation Performance \\
\hline EMJEE 1D & 001 & CF & PHE35 & \[
\begin{gathered}
\hline 555722.19 \mathrm{~N} \\
0032115.28 \mathrm{~W} \\
\hline
\end{gathered}
\] & Y & \[
\begin{gathered}
061^{\circ} \\
\left(058.9^{\circ}\right) \\
\hline
\end{gathered}
\] & -2.0 & - & - & - & - & RNAV 1 \\
\hline EMJEE 1D & 002 & CA & - & - & - & \[
\begin{gathered}
061^{\circ} \\
\left(058.9^{\circ}\right) \\
\hline
\end{gathered}
\] & -2.0 & - & LEFT & 636 & - & RNAV 1 \\
\hline EMJEE 1D & 003 & DF & PHE37 & \[
\begin{gathered}
\hline 555930.39 \mathrm{~N} \\
0031810.79 \mathrm{~W}
\end{gathered}
\] & Y & - & -2.0 & - & LEFT & - & - & RNAV 1 \\
\hline EMJEE 1D & 004 & DF & PHN11 & \[
\begin{gathered}
\hline 560043.88 \mathrm{~N} \\
0032544.03 \mathrm{~W}
\end{gathered}
\] & - & - & -2.0 & - & - & - & -220 & RNAV 1 \\
\hline EMJEE 1D & 005 & TF & PHW17 & \[
\begin{gathered}
\hline 560127.33 \mathrm{~N} \\
0033601.69 \mathrm{~W} \\
\hline
\end{gathered}
\] & - & \[
\begin{gathered}
279^{\circ} \\
\left(277.2^{\circ}\right) \\
\hline
\end{gathered}
\] & -2.0 & 5.8 & LEFT & +FL90 & -250 & RNAV 1 \\
\hline EMJEE 1D & 006 & TF & EMJEE & \[
\begin{gathered}
\hline 555859.67 \mathrm{~N} \\
0034546.50 \mathrm{~W}
\end{gathered}
\] & - & \[
\begin{gathered}
248^{\circ} \\
\left(245.8^{\circ}\right) \\
\hline
\end{gathered}
\] & -2.0 & 6.0 & - & FL100 & - & RNAV 1 \\
\hline
\end{tabular}

5248 - Edinburgh ACP Report 4.0

\begin{tabular}{|lll|}
\hline GRICE 5D & Climb straight ahead to PHE35 - upon reaching 636 turn & N560 via FOYLE, P600 \\
RWY 06 & \begin{tabular}{ll} 
left, direct to PHE37, left direct to PHN15 - left to PHN22, \\
right to GRICE.
\end{tabular} & \begin{tabular}{l} 
Eastbound, and for A/C \\
leaving CAS North of GRICE.
\end{tabular} \\
\hline
\end{tabular}

\section*{GENERAL INFORMATION}

1: Minimum climb gradient of \(3.9 \%\) required until reaching 636 for obstacle clearance
2: SIDs reflect Noise Preferential Routeings. See EGPH AD 2.21 for Noise Abatement Procedures.
3: Climb gradient up to \(5.2 \%\) is required for ATC and airspace requirements.
4: Adhere to maximum speed limits where specified by waypoint constraints
5: Maximum 250 KIAS below FL100 unless authorised by ATC
6: En route cruising levels will be allocated after take-off by 'Scotish Control'. Report callsign, SID designator, current altitude and cleared
altitude on first contact with 'Scottish Control'.

ADDITIONAL RNAV DATA
1: DME/DME only procedure: Procedure not available if GOW DME is \(\mathrm{u} / \mathrm{s}\)
2: RNAV1 SIDs are available only for approved aircraft that are either GNSS equipped or that have DME/DME and INS/IRU with automatic runway updating capability.

\section*{Standard Instrument Departure Coding Tables}

Edinburgh Runway 06 GRICE 5D
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Designator & \begin{tabular}{l}
Sequence \\
Number
\end{tabular} & Path Terminator & \begin{tabular}{l}
Waypoint \\
Name
\end{tabular} & Waypoint Co-ordinates & Fly-over & \begin{tabular}{l}
Course \\
Track \({ }^{\circ} \mathrm{M}\) \\
( \({ }^{\circ} \mathrm{T}\) )
\end{tabular} & Magnetic Variation & Distance (NM) & Turn Direction & Level Constraint & Speed Constraint & Navigation Performance \\
\hline GRICE 5D & 001 & CF & PHE35 & \[
\begin{gathered}
\hline 555722.19 \mathrm{~N} \\
0032115.28 \mathrm{~W} \\
\hline
\end{gathered}
\] & Y & \[
\begin{gathered}
061^{\circ} \\
\left(058.9^{\circ}\right) \\
\hline
\end{gathered}
\] & -2.0 & - & - & - & - & RNAV 1 \\
\hline GRICE 5D & 002 & CA & - & - & - & \[
\begin{gathered}
061^{\circ} \\
\left(058.9^{\circ}\right) \\
\hline
\end{gathered}
\] & -2.0 & - & LEFT & 636 & - & RNAV 1 \\
\hline GRICE 5D & 003 & DF & PHE37 & \[
\begin{gathered}
\hline 555930.39 \mathrm{~N} \\
0031810.79 \mathrm{~W} \\
\hline
\end{gathered}
\] & Y & - & -2.0 & - & - & - & - & RNAV 1 \\
\hline GRICE 5D & 004 & DF & PHN15 & \[
\begin{gathered}
560500.16 \mathrm{~N} \\
0032202.21 \mathrm{~W} \\
\hline
\end{gathered}
\] & - & - & -2.0 & - & - & - & -220 & RNAV 1 \\
\hline GRICE 5D & 005 & TF & PHN22 & \[
\begin{gathered}
560500.88 \mathrm{~N} \\
0033311.22 \mathrm{~W}
\end{gathered}
\] & - & \[
\begin{gathered}
272^{\circ} \\
\left(270.2^{\circ}\right) \\
\hline
\end{gathered}
\] & -2.0 & 6.2 & RIGHT & +4500 & -250 & RNAV 1 \\
\hline GRICE 5D & 006 & TF & GRICE & \[
\begin{gathered}
561148.00 \mathrm{~N} \\
0034107.79 \mathrm{~W}
\end{gathered}
\] & - & \[
\begin{gathered}
329^{\circ} \\
\left(326.9^{\circ}\right) \\
\hline
\end{gathered}
\] & -2.0 & 8.1 & - & 6000 & - & RNAV 1 \\
\hline
\end{tabular}

5248 - Edinburgh ACP Report 4.0

WAYPOINTS
PHE35 555722.19N 0032115.28W
PHE47 555940.00N 0031756.93W
PHE48 560231.65 N 0030730.87 W
\(\begin{array}{ll}\text { PHE48 } \\ \text { PHE49 } & 560437.22 \mathrm{~N} 0025949.86 \mathrm{~W}\end{array}\)
\(\begin{array}{ll}\text { PHE49 } & 560437.22 \mathrm{~N} \\ \text { PHE50 } & 555934.65 \mathrm{~N} 0025426.84 \mathrm{~W}\end{array}\)

\begin{tabular}{|l|c|l|}
\hline ACC & 124.500 & SCOTTISH CONTROL \\
\hline ATIS* & 131.350 & EDINBURGH INFORMATION \\
\hline APP & \(121.200^{*}\) & EDINBURGH APPROACH \\
\hline TWR & \(118.700,121.500^{*}\) & EDINBURGH TOWER \\
\hline RAD & \(121.200,128.975^{*}\) & EDINBURGH RADAR \\
\hline \multicolumn{3}{|c|}{ * See EGPH AD 2.18 for full details } \\
\hline
\end{tabular}
\begin{tabular}{|llc|} 
VOSNE 1D & \begin{tabular}{l} 
Climb straight ahead to PHE35 - upon reaching \\
RWY 06
\end{tabular} & Z36, turn left, direct to PHE47, right to PHE48 - \\
& PHE49, right to PHE50, right to VOSNE. & \\
\hline
\end{tabular}

\section*{GENERAL INFORMATION}

1: Minimum climb gradient of \(3.9 \%\) required until reaching 636 for obstacle clearance
2: SIDs reflect Noise Preferential Routeings. See EGPH AD 2.21 for Noise Abatement Procedures.
3: Climb gradient up to \(10.3 \%\) is required for ATC and airspace requirements.
4: Adhere to maximum speed limits where specified by waypoint constraints
5: Maximum 250 KIAS below FL100 unless authorised by ATC
6: En route cruising levels will be allocated after take-off by 'Scotish Control'. Report callsign, SID designator, current altitude and cleared
altitude on first contact with 'Scottish Control'.

ADDITIONAL RNAV DATA
1: DME/DME only procedure: Procedure not available if GOW DME is \(\mathrm{u} / \mathrm{s}\)
2: RNAV1 SIDs are available only for approved aircraft that are either GNSS equipped or that have DME/DME and INS/IRU with automatic runway updating capability.

Edinburgh Runway 06 VOSNE 1D
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Designator & \begin{tabular}{l}
Sequence \\
Number
\end{tabular} & Path Terminator & \begin{tabular}{l}
Waypoint \\
Name
\end{tabular} & Waypoint Co-ordinates & Fly-over & \begin{tabular}{l}
Course \\
Track \({ }^{\circ} \mathrm{M}\)
\[
\left({ }^{\circ} \mathrm{T}\right)
\]
\end{tabular} & Magnetic Variation & Distance (NM) & Turn Direction & Level Constraint & Speed Constraint & Navigation Performance \\
\hline VOSNE 1D & 001 & CF & PHE35 & \[
\begin{gathered}
\hline 555722.19 \mathrm{~N} \\
0032115.28 \mathrm{~W} \\
\hline
\end{gathered}
\] & Y & \[
\begin{gathered}
061^{\circ} \\
\left(058.9^{\circ}\right) \\
\hline
\end{gathered}
\] & -2.0 & - & - & - & - & RNAV 1 \\
\hline VOSNE 1D & 002 & CA & - & - & - & \[
\begin{gathered}
061^{\circ} \\
\left(058.9^{\circ}\right) \\
\hline
\end{gathered}
\] & -2.0 & - & LEFT & 636 & - & RNAV 1 \\
\hline VOSNE 1D & 003 & DF & PHE47 & \[
\begin{gathered}
\hline 555940.00 \mathrm{~N} \\
0031756.93 \mathrm{~W}
\end{gathered}
\] & - & - & -2.0 & - & - & - & - & RNAV 1 \\
\hline VOSNE 1D & 004 & TF & PHE48 & \[
\begin{gathered}
560231.65 \mathrm{~N} \\
0030730.87 \mathrm{~W}
\end{gathered}
\] & - & \[
\begin{gathered}
066^{\circ} \\
\left(063.8^{\circ}\right) \\
\hline
\end{gathered}
\] & -2.0 & 6.5 & - & +3000 & - & RNAV 1 \\
\hline VOSNE 1D & 005 & TF & PHE49 & \[
\begin{gathered}
\hline 560437.22 \mathrm{~N} \\
0025949.86 \mathrm{~W} \\
\hline
\end{gathered}
\] & - & \[
\begin{gathered}
066^{\circ} \\
\left(064.0^{\circ}\right) \\
\hline
\end{gathered}
\] & -2.0 & 4.8 & RIGHT & +FL80 & -220 & RNAV 1 \\
\hline VOSNE 1D & 006 & TF & PHE50 & \[
\begin{gathered}
\hline 555934.65 \mathrm{~N} \\
0025426.84 \mathrm{~W} \\
\hline
\end{gathered}
\] & - & \[
\begin{gathered}
151^{\circ} \\
\left(149.1^{\circ}\right) \\
\hline
\end{gathered}
\] & -2.0 & 5.9 & RIGHT & +FL110 & -250 & RNAV 1 \\
\hline VOSNE 1D & 007 & TF & VOSNE & \[
\begin{gathered}
\hline 555125.28 \mathrm{~N} \\
0025549.51 \mathrm{~W} \\
\hline
\end{gathered}
\] & - & \[
\begin{gathered}
187^{\circ} \\
\left(185.4^{\circ}\right) \\
\hline
\end{gathered}
\] & -2.0 & 8.2 & - & FL150 & - & RNAV 1 \\
\hline
\end{tabular}

5248 - Edinburgh ACP Report 4.0

\begin{tabular}{|lll|}
\hline KRAGY 1D & Climb straight ahead to PHE35 - upon reaching & Z507 \\
RWY 06 & \begin{tabular}{ll} 
636, turn left, direct to to PHE42, right to PHE28, \\
right to PHE29, right to PHE30, right to PHS17 - \\
KRAGY. & Non-Jet A/C: H24 \\
&
\end{tabular} \begin{tabular}{l} 
Jet A/C: between the hours of 23:00 \\
and 06:00 only (one hour earlier in \\
the summer)
\end{tabular} \\
\hline
\end{tabular}

\section*{GENERAL INFORMATION}

1: Minimum climb gradient of \(3.9 \%\) required until reaching 636 for obstacle clearance
2: SIDs reflect Noise Preferential Routeings. See EGPH AD 2.21 for Noise Abatement Procedures.
3: Climb gradient up to \(6.7 \%\) is required for ATC and airspace requirements.
4: Adhere to maximum speed limits where specified by waypoint constraints
5: Maximum 250 KIAS below FL100 unless authorised by ATC
6: En route cruising levels will be allocated after take-off by 'Scotish Control'. Report callsign, SID designator, current altitude and cleared
altitude on first contact with 'Scottish Control'.

ADDITIONAL RNAV DATA
1: DME/DME only procedure: Procedure not available if GOW DME is \(\mathrm{u} / \mathrm{s}\)
2: RNAV1 SIDs are available only for approved aircraft that are either GNSS equipped or that have DME/DME and INS/IRU with automatic runway updating capability.

\section*{Standard Instrument Departure Coding Tables}

Edinburgh Runway 06 KRAGY 1D
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Designator & \begin{tabular}{l}
Sequence \\
Number
\end{tabular} & Path Terminator & Waypoint Name & Waypoint Co-ordinates & Fly-over & Course Track \({ }^{\circ} \mathrm{M}\) ( \({ }^{\circ} \mathrm{T}\) ) & Magnetic Variation & Distance (NM) & Turn Direction & Level Constraint & Speed Constraint & Navigation Performance \\
\hline KRAGY 1D & 001 & CF & PHE35 & \[
\begin{gathered}
\hline 555722.19 \mathrm{~N} \\
0032115.28 \mathrm{~W}
\end{gathered}
\] & Y & \[
\begin{gathered}
061^{\circ} \\
\left(058.9^{\circ}\right) \\
\hline
\end{gathered}
\] & -2.0 & - & - & - & - & RNAV 1 \\
\hline KRAGY 1D & 002 & CA & - & - & - & \[
\begin{gathered}
061^{\circ} \\
\left(058.9^{\circ}\right) \\
\hline
\end{gathered}
\] & -2.0 & - & LEFT & 636 & - & RNAV 1 \\
\hline KRAGY 1D & 003 & DF & PHE42 & \[
\begin{gathered}
\hline 555957.35 \mathrm{~N} \\
0031731.93 \mathrm{~W}
\end{gathered}
\] & - & - & -2.0 & - & - & - & - & RNAV 1 \\
\hline KRAGY 1D & 004 & TF & PHE28 & \[
\begin{gathered}
\hline 560003.02 \mathrm{~N} \\
0030838.24 \mathrm{~W} \\
\hline
\end{gathered}
\] & - & \[
\begin{gathered}
091^{\circ} \\
\left(088.9^{\circ}\right) \\
\hline
\end{gathered}
\] & -2.0 & 5.0 & RIGHT & +3000 & - & RNAV 1 \\
\hline KRAGY 1D & 005 & TF & PHE29 & \[
\begin{gathered}
\hline 555649.46 \mathrm{~N} \\
0030153.00 \mathrm{~W} \\
\hline
\end{gathered}
\] & - & \[
\begin{gathered}
132^{\circ} \\
\left(130.4^{\circ}\right)
\end{gathered}
\] & -2.0 & 5.0 & RIGHT & \[
\begin{aligned}
& \hline- \text { FL80 } \\
& +4000 \\
& \hline
\end{aligned}
\] & -220 & RNAV 1 \\
\hline KRAGY 1D & 006 & TF & PHE30 & \[
\begin{gathered}
555226.90 \mathrm{~N} \\
0030746.81 \mathrm{~W} \\
\hline
\end{gathered}
\] & - & \[
\begin{gathered}
219^{\circ} \\
\left(217.2^{\circ}\right) \\
\hline
\end{gathered}
\] & -2.0 & 5.5 & RIGHT & - & -250 & RNAV 1 \\
\hline KRAGY 1D & 007 & TF & PHS17 & \[
\begin{gathered}
555104.85 \mathrm{~N} \\
0031715.94 \mathrm{~W}
\end{gathered}
\] & - & \[
\begin{gathered}
258^{\circ} \\
\left(255.7^{\circ}\right) \\
\hline
\end{gathered}
\] & -2.0 & 5.5 & - & +FL90 & - & RNAV 1 \\
\hline KRAGY 1D & 008 & TF & KRAGY & \[
\begin{gathered}
554859.99 \mathrm{~N} \\
0033131.12 \mathrm{~W} \\
\hline
\end{gathered}
\] & - & \[
\begin{gathered}
258^{\circ} \\
\left(255.6^{\circ}\right) \\
\hline
\end{gathered}
\] & -2.0 & 8.3 & - & FL100 & - & RNAV 1 \\
\hline
\end{tabular}

5248 - Edinburgh ACP Report 4.0

Omni Directional Departure RWY 06
\begin{tabular}{|l|l|l|}
\hline & Description & Restriction \\
\hline RWY 06 & Climb straight ahead MAG track 061 \({ }^{\circ}\) to altitude & PDG 4.8\% to 1600ft then \\
& 636ft then turn left MAG track 041 \({ }^{\circ}\) and climb to & \(3.3 \%\). \\
& enroute safety altitude/MSA. & No turn before DER. \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline & Description & Restriction \\
\hline RWY 24 & Climb straight ahead MAG track \(241^{\circ}\) to altitude 636 ft then turn on track climbing to enroute safety altitude/MSA. & \begin{tabular}{l}
PDG 4.6\% to 2200ft then 3.3\%. \\
No turn before DER. \\
Close-in obstacles exist for RWY 24 departures. See Aerodrome Obstacle Chart and EGPH AD 2.10 Aerodrome Obstacles.
\end{tabular} \\
\hline
\end{tabular}

RNAV5 (DME/DME or GNSS) STANDARD ARRIVAL CHART INSTRUMENT (STAR) - ICAO

DISTANCES IN NAUTICAL MILES
TRACKS ARE MAGNETIC
ALTITUDES AND ELEVATIONS ARE IN FEET


Edinburgh BLACA 1E
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Designator & Sequence Number & Path Terminator & Waypoint Name & Waypoint Co-ordinates & Fly-over & \begin{tabular}{l}
Course \\
Track \({ }^{\circ} \mathrm{M}\) \\
( \({ }^{\circ} \mathrm{T}\) )
\end{tabular} & \begin{tabular}{l}
Magnetic \\
Variation
\end{tabular} & Distance (NM) & Turn Direction & \begin{tabular}{l}
Level \\
Constraint
\end{tabular} & Speed Constraint & Navigation Performance \\
\hline BLACA 1E & 001 & IF & BLACA & \[
\begin{gathered}
545300.00 \mathrm{~N} \\
0050931.92 \mathrm{~W}
\end{gathered}
\] & - & - & - & - & - & - & - & RNAV 5 \\
\hline BLACA 1E & 002 & TF & TUNSO & \[
\begin{gathered}
550640.24 \mathrm{~N} \\
0045740.78 \mathrm{~W}
\end{gathered}
\] & - & \[
\begin{gathered}
028^{\circ} \\
\left(026.4^{\circ}\right) \\
\hline
\end{gathered}
\] & -2.0 & 15.3 & RIGHT & -FL170 & - & RNAV 5 \\
\hline BLACA 1E & 003 & TF & PHS45 & \[
\begin{gathered}
550957.39 \mathrm{~N} \\
0044428.78 \mathrm{~W}
\end{gathered}
\] & - & \[
\begin{gathered}
068^{\circ} \\
\left(066.4^{\circ}\right) \\
\hline
\end{gathered}
\] & -2.0 & 8.3 & - & +FL130 & - & RNAV 5 \\
\hline BLACA 1E & 004 & TF & PHS46 & \[
\begin{gathered}
552608.91 \mathrm{~N} \\
0033725.39 \mathrm{~W}
\end{gathered}
\] & - & \[
\begin{gathered}
069^{\circ} \\
\left(066.6^{\circ}\right) \\
\hline
\end{gathered}
\] & -2.0 & 41.6 & - & - & -250 & RNAV 5 \\
\hline BLACA 1E & 005 & TF & TLA & \[
\begin{gathered}
552956.92 \mathrm{~N} \\
0032110.20 \mathrm{~W}
\end{gathered}
\] & - & \[
\begin{gathered}
069^{\circ} \\
\left(067.5^{\circ}\right) \\
\hline
\end{gathered}
\] & -2.0 & 10.0 & LEFT & - & - & RNAV 5 \\
\hline BLACA 1E & 006 & TF & GEVEZ & \[
\begin{gathered}
553531.51 \mathrm{~N} \\
0030819.73 \mathrm{~W}
\end{gathered}
\] & - & \[
\begin{gathered}
054^{\circ} \\
\left(052.5^{\circ}\right) \\
\hline
\end{gathered}
\] & -2.0 & 9.2 & LEFT & - & - & RNAV 5 \\
\hline BLACA 1E & 007 & TF & EDIBO & \[
\begin{gathered}
554127.60 \mathrm{~N} \\
0030946.31 \mathrm{~W}
\end{gathered}
\] & - & \[
\begin{gathered}
354^{\circ} \\
\left(352.2^{\circ}\right) \\
\hline
\end{gathered}
\] & -2.0 & 6.0 & - & \[
\begin{aligned}
& \hline-F L 100 \\
& +F L 70 \\
& \hline
\end{aligned}
\] & -230 & RNAV 5 \\
\hline
\end{tabular}

5248 - Edinburgh ACP Report 4.0

RNAV5 (DME/DME or GNSS) STANDARD ARRIVAL CHART INSTRUMENT (STAR) - ICAO

DISTANCES IN NAUTICAL MILES
TRACKS ARE MAGNETIC
ALTITUDES AND ELEVATIONS ARE IN FEET


Edinburgh BLACA 1F
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Designator & \begin{tabular}{l}
Sequence \\
Number
\end{tabular} & Path Terminator & Waypoint Name & Waypoint Co-ordinates & Fly-over & Course Track \({ }^{\circ} \mathrm{M}\) ( \({ }^{\circ} \mathrm{T}\) ) & Magnetic Variation & \begin{tabular}{l}
Distance \\
(NM)
\end{tabular} & Turn Direction & Level Constraint & Speed Constraint & Navigation Performance \\
\hline BLACA 1F & 001 & IF & BLACA & \[
\begin{gathered}
\hline 545300.00 \mathrm{~N} \\
0050931.92 \mathrm{~W}
\end{gathered}
\] & - & - & - & - & - & - & - & RNAV 5 \\
\hline BLACA 1F & 002 & TF & GIRVA & \[
\begin{gathered}
\hline 551107.99 \mathrm{~N} \\
0045346.67 \mathrm{~W}
\end{gathered}
\] & - & \[
\begin{gathered}
028^{\circ} \\
\left(026.4^{\circ}\right) \\
\hline
\end{gathered}
\] & -2.0 & 20.3 & RIGHT & -FL120 & - & RNAV 5 \\
\hline BLACA 1F & 003 & TF & PHS47 & \[
\begin{gathered}
552640.88 \mathrm{~N} \\
0033746.80 \mathrm{~W}
\end{gathered}
\] & - & \[
\begin{array}{c|}
\hline 072^{\circ} \\
\left(069.7^{\circ}\right)
\end{array}
\] & -2.0 & 46.1 & - & - & -250 & RNAV 5 \\
\hline BLACA 1F & 004 & TF & TLA & \[
\begin{gathered}
552956.92 \mathrm{~N} \\
0032110.20 \mathrm{~W} \\
\hline
\end{gathered}
\] & - & \[
\begin{gathered}
073^{\circ} \\
\left(070.8^{\circ}\right) \\
\hline
\end{gathered}
\] & -2.0 & 10.0 & LEFT & - & - & RNAV 5 \\
\hline BLACA 1F & 005 & TF & GEVEZ & \[
\begin{gathered}
\hline 553531.51 \mathrm{~N} \\
0030819.73 \mathrm{~W}
\end{gathered}
\] & - & \[
\begin{gathered}
054^{\circ} \\
\left(052.5^{\circ}\right) \\
\hline
\end{gathered}
\] & -2.0 & 9.2 & LEFT & - & - & RNAV 5 \\
\hline BLACA 1F & 006 & TF & EDIBO & \[
\begin{gathered}
554127.60 \mathrm{~N} \\
0030946.31 \mathrm{~W}
\end{gathered}
\] & - & \[
\begin{gathered}
354^{\circ} \\
\left(352.2^{\circ}\right) \\
\hline
\end{gathered}
\] & -2.0 & 6.0 & - & \[
\begin{aligned}
& -\mathrm{FL100} \\
& +\mathrm{FL} 70
\end{aligned}
\] & -230 & RNAV 5 \\
\hline
\end{tabular}

5248 - Edinburgh ACP Report 4.0

RNAV5 (DME/DME or GNSS)
STANDARD ARRIVAL CHART -
INSTRUMENT (STAR) - ICAO

DISTANCES IN NAUTICAL MILES
TRACKS ARE MAGNETIC
ALTITUDES AND ELEVATIONS ARE IN FEET

\section*{EDINBURGH \\ ESKDO 1E}



GENERAL INFORMATION
Standard Routes may be varied at the discretion of ATC.
Adhere to maximum speed limits where specified by waypoint constraints.
Maximum 250 KIAS below FL100 unless authorised by ATC.
Aircraft may be instructed "Direct to" (waypoint) following radar vectoring.

\section*{WARNING}

Do not proceed beyond EDIBO without ATC clearance.

\section*{WARNING}

The EDIBO hold is only protected for entry via GEVEZ.

\section*{WAYPOINTS}

ESKDO 551756.00N 0031215.26W
GEVEZ 553531.51 N 0030819.73 W EDIBO 554127.60N 0030946.31W


INPIP

Edinburgh ESKDO 1E
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Designator & Sequence Number & \begin{tabular}{l}
Path \\
Terminator
\end{tabular} & Waypoint Name & Waypoint Co-ordinates & Fly-over & Course Track \({ }^{\circ} \mathrm{M}\) ( \({ }^{\circ} \mathrm{T}\) ) & Magnetic Variation & Distance (NM) & Turn Direction & Level Constraint & Speed Constraint & Navigation Performance \\
\hline ESKDO 1E & 001 & IF & ESKDO & \[
\begin{gathered}
\hline 551756.00 \mathrm{~N} \\
0031215.26 \mathrm{~W}
\end{gathered}
\] & - & - & - & - & - & -FL200 & -250 & RNAV 5 \\
\hline ESKDO 1E & 002 & TF & GEVEZ & 553531.51 N
0030819.73 W & - & \[
\begin{array}{c|}
\hline 009^{\circ} \\
\left(007.2^{\circ}\right)
\end{array}
\] & -2.0 & 17.8 & LEFT & - & - & RNAV 5 \\
\hline ESKDO 1E & 003 & TF & EDIBO & \[
\begin{gathered}
\hline 554127.60 \mathrm{~N} \\
0030946.31 \mathrm{~W} \\
\hline
\end{gathered}
\] & - & \[
\begin{gathered}
354^{\circ} \\
\left(352.2^{\circ}\right) \\
\hline
\end{gathered}
\] & -2.0 & 6.0 & - & \[
\begin{aligned}
& -F L 100 \\
& + \text { FL70 } \\
& \hline
\end{aligned}
\] & -230 & RNAV 5 \\
\hline
\end{tabular}

5248 - Edinburgh ACP Report 4.0

RNAV5 (DME/DME or GNSS)
STANDARD ARRIVAL CHART -
INSTRUMENT (STAR) - ICAO

DISTANCES IN NAUTICAL MILES
TRACKS ARE MAGNETIC
ALTITUDES AND ELEVATIONS ARE IN FEET

EDINBURGH
HAVEN 1E

\begin{tabular}{|l|l|l|}
\hline ATIS & 131.350 & EDINBURGH INFORMATION \\
\hline APP & \(121.200^{*}\) & EDINBURGH APPROACH \\
\hline TWR & \(118.700,121.500^{*}\) & EDINBURGH TOWER \\
\hline RAD & \(121.200,128.975^{*}\) & EDINBURGH RADAR \\
\hline * See EGPH AD 2.18 for full details. \\
\hline
\end{tabular}

Edinburgh HAVEN \(1 E\)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Designator & Sequence Number & Path Terminator & Waypoint Name & Waypoint Co-ordinates & Fly-over & \begin{tabular}{l}
Course \\
Track \({ }^{\circ} \mathrm{M}\) \\
( \({ }^{\circ}\) )
\end{tabular} & Magnetic Variation & \begin{tabular}{l}
Distance \\
(NM)
\end{tabular} & Turn Direction & Level Constraint & Speed Constraint & Navigation Performance \\
\hline HAVEN 1E & 001 & IF & HAVEN & \[
\begin{gathered}
\hline 552740.00 \mathrm{~N} \\
0025946.67 \mathrm{~W}
\end{gathered}
\] & - & - & - & - & - & -FL260 & -250 & RNAV 5 \\
\hline HAVEN 1E & 002 & TF & GEVEZ & \[
\begin{gathered}
\hline 553531.51 \mathrm{~N} \\
0030819.73 \mathrm{~W}
\end{gathered}
\] & - & \[
\begin{gathered}
330^{\circ} \\
\left(328.4^{\circ}\right) \\
\hline
\end{gathered}
\] & -2.0 & 9.3 & RIGHT & - & - & RNAV 5 \\
\hline HAVEN 1E & 003 & TF & EDIBO & \[
\begin{gathered}
\hline 554127.60 \mathrm{~N} \\
0030946.31 \mathrm{~W} \\
\hline
\end{gathered}
\] & - & \[
\begin{gathered}
354^{\circ} \\
\left(352.2^{\circ}\right) \\
\hline
\end{gathered}
\] & -2.0 & 6.0 & - & \[
\begin{aligned}
& \hline-F L 100 \\
& +F L 70 \\
& \hline
\end{aligned}
\] & -230 & RNAV 5 \\
\hline
\end{tabular}

5248 - Edinburgh ACP Report 4.0

RNAV5 (DME/DME or GNSS)
STANDARD ARRIVAL CHART INSTRUMENT (STAR) - ICAO

DISTANCES IN NAUTICAL MILES
TRACKS ARE MAGNETIC ALTITUDES AND ELEVATIONS ARE IN FEET

EDINBURGH
PTH (PERTH) 1E
\begin{tabular}{|lll|}
\hline \begin{tabular}{l} 
ROUTE \\
DESIGNATOR
\end{tabular} & VIA & ROUTE \\
\hline PTH (PERTH) 1E P600 & PTH-EDONU-GRICE-STIRA \\
\hline
\end{tabular}
\begin{tabular}{|c|}
\hline \begin{tabular}{c} 
TRANSITION ALTITUDE \\
\(\mathbf{6 0 0 0}\)
\end{tabular} \\
\hline \begin{tabular}{c} 
TRANSITION LEVEL \\
ATC
\end{tabular} \\
\hline \begin{tabular}{c} 
AREA MNM ALT \((\times 100)\) \\
\(X X\)
\end{tabular} \\
\hline
\end{tabular}

GENERAL INFORMATION
Standard Routes may be varied at the discretion of ATC.
Adhere to maximum speed limits where specified by waypoint constraints.
Maximum 250 KIAS below FL100 unless authorised by ATC.
Aircraft may be instructed "Direct to" (waypoint) following radar vectoring.

DESCENT PLANNING
Pilots should plan their descent to arrive at GRICE at FL70.
ACTUAL DESCENT CLEARANCE WILL BE AS DIRECTED BY ATC.

WARNING
The STIRA hold is only protected for entry via GRICE.


For Minimum WARNING
For Minimum Descent Rate requirements See ENR 1.1 para 3.2.
```

WAYPOINTS

```
PTH 562632.63N 0032206.96W
EDONU 561736.00 N 0033341.00 W
GRICE 561148.00 N 0034107.79 W

STIRA \(\quad 560802.11 \mathrm{~N} 0035000.98 \mathrm{~W}\)
\begin{tabular}{|l|l|l|}
\hline ATIS & 131.350 & EDINBURGH INFORMATION \\
\hline APP & \(121.200^{*}\) & EDINBURGH APPROACH \\
\hline TWR & \(118.700,121.500^{*}\) & EDINBURGH TOWER \\
\hline RAD & \(121.200,128.975^{*}\) & EDINBURGH RADAR \\
\hline * See EGPH AD 2.18 for full details. \\
\hline
\end{tabular}

\footnotetext{
\(\xrightarrow{\text { VAR } 2.0^{\circ} \mathrm{W}-2019}\)
N
}

Edinburgh PTH (PERTH) 1E
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Designator & Sequence Number & Path Terminator & Waypoint Name & Waypoint Co-ordinates & Fly-over & \begin{tabular}{l}
Course Track \({ }^{\circ} \mathrm{M}\) \\
( \({ }^{\circ}\) T)
\end{tabular} & Magnetic Variation & \begin{tabular}{l}
Distance \\
(NM)
\end{tabular} & Turn Direction & Level Constraint & Speed Constraint & Navigation Performance \\
\hline PTH 1E & 001 & IF & PTH & \[
\begin{gathered}
\hline 562632.63 \mathrm{~N} \\
0032206.96 \mathrm{~W}
\end{gathered}
\] & - & - & - & - & - & - & - & RNAV 5 \\
\hline PTH 1E & 002 & TF & EDONU & \[
\begin{gathered}
561736.00 \mathrm{~N} \\
0033341.00 \mathrm{~W} \\
\hline
\end{gathered}
\] & - & \[
\begin{gathered}
218^{\circ} \\
\left(215.8^{\circ}\right) \\
\hline
\end{gathered}
\] & -2.0 & 11.0 & - & +FL90 & - & RNAV 5 \\
\hline PTH 1E & 003 & TF & GRICE & \[
\begin{gathered}
\hline 561148.00 \mathrm{~N} \\
0034107.79 \mathrm{~W}
\end{gathered}
\] & - & \[
\begin{gathered}
218^{\circ} \\
\left(215.6^{\circ}\right) \\
\hline
\end{gathered}
\] & -2.0 & 7.1 & RIGHT & FL70 & -250 & RNAV 5 \\
\hline PTH 1E & 004 & TF & STIRA & \[
\begin{gathered}
560802.11 \mathrm{~N} \\
0035000.98 \mathrm{~W}
\end{gathered}
\] & - & \[
\begin{gathered}
235^{\circ} \\
\left(232.9^{\circ}\right)
\end{gathered}
\] & -2.0 & 6.2 & - & FL70 & -230 & RNAV 5 \\
\hline
\end{tabular}

5248 - Edinburgh ACP Report 4.0

RNAV1 (DME/DME or GNSS) APPROACH TRANSITION CHART INSTRUMENT - ICAO

DISTANCES IN NAUTICAL MILES
TRACKS ARE MAGNETIC EDINBURGH

RWY 24 EDIBO 1C


Edinburgh Runway 24 EDIBO 1C
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Designator & Sequence Number & Path Terminator & Waypoint Name & Waypoint Co-ordinates & Fly-over & Course Track \({ }^{\circ} \mathrm{M}\) ( \({ }^{\circ}\) T) & Magnetic Variation & \begin{tabular}{l}
Distance \\
(NM)
\end{tabular} & Turn Direction & Level Constraint & Speed Constraint & Navigation Performance \\
\hline EDIBO 1C & 001 & IF & EDIBO & \[
\begin{gathered}
\hline 554127.60 \mathrm{~N} \\
0030946.31 \mathrm{~W}
\end{gathered}
\] & - & - & - & - & - & \[
\begin{aligned}
& -F L 100 \\
& +F L 70
\end{aligned}
\] & -230 & RNAV 1 \\
\hline EDIBO 1C & 002 & TF & PHS16 & \[
\begin{gathered}
554803.38 \mathrm{~N} \\
0031123.06 \mathrm{~W} \\
\hline
\end{gathered}
\] & - & \[
\begin{gathered}
354^{\circ} \\
\left(352.2^{\circ}\right) \\
\hline
\end{gathered}
\] & -2.0 & 6.7 & RIGHT & - & - & RNAV 1 \\
\hline EDIBO 1C & 003 & TF & SEEDI & \[
\begin{gathered}
\hline 555325.91 \mathrm{~N} \\
0030319.52 \mathrm{~W}
\end{gathered}
\] & - & \[
\begin{gathered}
042^{\circ} \\
\left(040.1^{\circ}\right)
\end{gathered}
\] & -2.0 & 7.0 & - & -FL80 & - & RNAV 1 \\
\hline EDIBO 1C & 004 & TF & TRIAR & \[
\begin{gathered}
\hline 555825.15 \mathrm{~N} \\
0025548.18 \mathrm{~W} \\
\hline
\end{gathered}
\] & - & \[
\begin{gathered}
042^{\circ} \\
\left(040.2^{\circ}\right) \\
\hline
\end{gathered}
\] & -2.0 & 6.5 & LEFT & +4000 & -185 & RNAV 1 \\
\hline EDIBO 1C & 005 & TF & ABSEK & \[
\begin{gathered}
\hline 560356.85 \mathrm{~N} \\
0030141.98 \mathrm{~W} \\
\hline
\end{gathered}
\] & - & \[
\begin{gathered}
331^{\circ} \\
\left(329.2^{\circ}\right) \\
\hline
\end{gathered}
\] & -2.0 & 6.5 & - & \[
\begin{array}{r}
\hline-4000 \\
+3000 \\
\hline
\end{array}
\] & - & RNAV 1 \\
\hline
\end{tabular}

5248 - Edinburgh ACP Report 4.0

RNAV1 (DME/DME or GNSS)
APPROACH TRANSITION CHART -
INSTRUMENT - ICAO


Edinburgh Runway 06 EDIBO 1D
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Designator & Sequence Number & Path Terminator & Waypoint Name & Waypoint Co-ordinates & Fly-over & Course Track \({ }^{\circ} \mathrm{M}\) ( \({ }^{\circ} \mathrm{T}\) ) & Magnetic Variation & \begin{tabular}{l}
Distance \\
(NM)
\end{tabular} & Turn Direction & Level Constraint & Speed Constraint & Navigation Performance \\
\hline EDIBO 1D & 001 & IF & EDIBO & \[
\begin{gathered}
\hline 554127.60 \mathrm{~N} \\
0030946.31 \mathrm{~W}
\end{gathered}
\] & - & - & - & - & - & \[
\begin{aligned}
& \hline-F L 100 \\
& +F L 70
\end{aligned}
\] & -230 & RNAV 1 \\
\hline EDIBO 1D & 002 & TF & BIRCH & \[
\begin{gathered}
554345.52 \mathrm{~N} \\
0032436.45 \mathrm{~W} \\
\hline
\end{gathered}
\] & - & \[
\begin{gathered}
287^{\circ} \\
\left(285.4^{\circ}\right) \\
\hline
\end{gathered}
\] & -2.0 & 8.7 & RIGHT & -FL80 & - & RNAV 1 \\
\hline EDIBO 1D & 003 & TF & PHS18 & \[
\begin{gathered}
\hline 554450.90 \mathrm{~N} \\
0033010.97 \mathrm{~W} \\
\hline
\end{gathered}
\] & - & \[
\begin{gathered}
291^{\circ} \\
\left(289.1^{\circ}\right) \\
\hline
\end{gathered}
\] & -2.0 & 3.3 & - & -6000 & - & RNAV 1 \\
\hline EDIBO 1D & 004 & TF & ADLOM & \[
\begin{gathered}
\hline 554636.03 \mathrm{~N} \\
0033907.91 \mathrm{~W}
\end{gathered}
\] & - & \[
\begin{gathered}
291^{\circ} \\
\left(289.2^{\circ}\right) \\
\hline
\end{gathered}
\] & -2.0 & 5.4 & RIGHT & +4000 & -185 & RNAV 1 \\
\hline EDIBO 1D & 005 & TF & VETID & \[
\begin{gathered}
\hline 555000.69 \mathrm{~N} \\
0034249.03 \mathrm{~W} \\
\hline
\end{gathered}
\] & - & \[
\begin{gathered}
331^{\circ} \\
\left(328.7^{\circ}\right) \\
\hline
\end{gathered}
\] & -2.0 & 4.0 & - & \[
\begin{array}{r}
\hline-4000 \\
+3000 \\
\hline
\end{array}
\] & - & RNAV 1 \\
\hline
\end{tabular}

5248 - Edinburgh ACP Report 4.0

\section*{INSTRUMENT APPROACH CHART - ICAO}


\section*{NOTES:}
1. See AD2. 22 / 1.d and 4.a for speed restrictions.

\section*{INSTRUMENT APPROACH CHART - ICAO}



\section*{NOTES:}
1. See AD2. 22 / 1.d and 4.a for speed restrictions.

\section*{INSTRUMENT APPROACH CHART - ICAO}



\footnotetext{
GENERAL INFORMATION - ADDITIONAL NOTES MAY BE ADDED BY ATC AS REQUIRED.
}

\section*{Instrument Approach Procedure Coding Tables}

Edinburgh Runway 06 RNAV (GNSS) Instrument Approach Procedure v4.0
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline Designator & Sequence Number & \begin{tabular}{l}
Path \\
Terminator
\end{tabular} & Waypoint Name & Flyover & \begin{tabular}{l}
Course/ \\
Track \\
\({ }^{\circ} \mathrm{M}\left({ }^{\circ} \mathrm{T}\right)\)
\end{tabular} & Turn Direction & Level Constraint & Speed Constraint & Co-ordinates & Remarks and Distance to MAPt \\
\hline R06 & 001 & IF & VETID & - & - & - & \[
\begin{array}{r}
-4000 \\
+3000 \\
\hline
\end{array}
\] & -185 & \[
\begin{gathered}
555000.69 \mathrm{~N} \\
0034249.03 \mathrm{~W}
\end{gathered}
\] & IF / 12.9 \\
\hline R06 & 002 & TF & PH06F & - & \[
\begin{gathered}
061^{\circ} \\
\left(058.6^{\circ}\right)
\end{gathered}
\] & - & 3000 & - & \[
\begin{gathered}
555205.41 \mathrm{~N} \\
0033645.51 \mathrm{~W}
\end{gathered}
\] & FAF / 8.9 \\
\hline R06 & 003 & TF & RW06 & Y & \[
\begin{gathered}
061^{\circ} \\
\left(058.7^{\circ}\right) \\
\hline
\end{gathered}
\] & - & - & - & \[
\begin{gathered}
555641.99 \mathrm{~N} \\
0032313.90 \mathrm{~W}
\end{gathered}
\] & MAPt \\
\hline R06 & 004 & CF & PHM01 & Y & \[
\begin{gathered}
061^{\circ} \\
\left(058.9^{\circ}\right) \\
\hline
\end{gathered}
\] & - & - & - & \[
\begin{gathered}
555802.46 \mathrm{~N} \\
0031916.33 \mathrm{~W} \\
\hline
\end{gathered}
\] & - \\
\hline R06 & 005 & CA & - & - & \[
\begin{gathered}
061^{\circ} \\
\left(058.9^{\circ}\right) \\
\hline
\end{gathered}
\] & LEFT & 3000 & - & - & - \\
\hline R06 & 006 & DF & PHM02 & - & - & LEFT & - & - & \[
\begin{gathered}
\hline 560007.01 \mathrm{~N} \\
0032655.08 \mathrm{~W}
\end{gathered}
\] & - \\
\hline R06 & 007 & TF & UW & Y & \[
\begin{gathered}
199^{\circ} \\
\left(197.4^{\circ}\right)
\end{gathered}
\] & - & 3000 & -210 & \[
\begin{gathered}
555418.55 \mathrm{~N} \\
0033009.04 \mathrm{~W}
\end{gathered}
\] & HOLD \\
\hline
\end{tabular}

\section*{INSTRUMENT APPROACH CHART - ICAO}



\section*{NOTES:}
1. See AD2. 22 / 1.d and 4.a for speed restrictions.

\section*{INSTRUMENT APPROACH CHART - ICAO}


RECOMMENDED PROFILE Gradient 5.2\%, 320FT/NM
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline DME I-TH & 8 & 7 & 6 & 5 & 4 & 2 & 3 \\
\hline ALT(HGT) & \(\mathbf{2 7 0 0}(2600)\) & \(\mathbf{2 3 8 0}(2280)\) & \(\mathbf{2 0 6 0}(1960)\) & \(\mathbf{1 7 4 0}(1640)\) & \(\mathbf{1 4 2 0}(1320)\) & \(\mathbf{1 1 1 0}(1010)\) & \(\mathbf{7 9 0}(690)\) \\
\hline
\end{tabular}


\section*{NOTES:}
1. See AD2. 22 / 1.d and 4.a for speed restrictions.

\section*{INSTRUMENT APPROACH CHART - ICAO}



\section*{Instrument Approach Procedure Coding Tables}

Edinburgh Runway 24 RNAV (GNSS) Instrument Approach Procedure v4.0
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline Designator & Sequence Number & Path Terminator & Waypoint Name & Flyover & \begin{tabular}{l}
Course/ \\
Track \\
\({ }^{\circ} \mathrm{M}\left({ }^{\circ} \mathrm{T}\right)\)
\end{tabular} & Turn Direction & Level Constraint & Speed Constraint & Co-ordinates & Remarks and Distance to MAPt \\
\hline R24 & 001 & IF & ABSEK & - & - & - & \[
\begin{array}{r}
-4000 \\
+3000 \\
\hline
\end{array}
\] & -185 & \[
\begin{gathered}
560356.85 \mathrm{~N} \\
0030141.98 \mathrm{~W} \\
\hline
\end{gathered}
\] & IF / 13.0 \\
\hline R24 & 002 & TF & PH24F & - & \[
\begin{gathered}
241^{\circ} \\
\left(239.2^{\circ}\right)
\end{gathered}
\] & - & 3000 & - & \[
\begin{gathered}
560153.89 \mathrm{~N} \\
0030749.25 \mathrm{~W}
\end{gathered}
\] & FAF / 9.0 \\
\hline R24 & 003 & TF & RW24 & Y & \[
\begin{gathered}
241^{\circ} \\
\left(239.1^{\circ}\right) \\
\hline
\end{gathered}
\] & - & - & - & \[
\begin{gathered}
555717.66 \mathrm{~N} \\
0032128.66 \mathrm{~W}
\end{gathered}
\] & MAPt \\
\hline R24 & 004 & CF & PHM11 & Y & \[
\begin{gathered}
241^{\circ} \\
\left(238.9^{\circ}\right) \\
\hline
\end{gathered}
\] & - & - & - & \[
\begin{gathered}
555459.93 \mathrm{~N} \\
0032814.35 \mathrm{~W}
\end{gathered}
\] & - \\
\hline R24 & 005 & CA & - & - & \[
\begin{gathered}
241^{\circ} \\
\left(238.9^{\circ}\right) \\
\hline
\end{gathered}
\] & RIGHT & 3000 & - & - & - \\
\hline R24 & 006 & DF & PHM12 & - & - & RIGHT & - & - & \[
\begin{gathered}
555949.14 \mathrm{~N} \\
0032747.95 \mathrm{~W} \\
\hline
\end{gathered}
\] & - \\
\hline R24 & 007 & TF & EDN & Y & \[
\begin{gathered}
102^{\circ} \\
\left(100.4^{\circ}\right)
\end{gathered}
\] & - & 3000 & -210 & \[
\begin{gathered}
555842.54 \mathrm{~N} \\
0031707.63 \mathrm{~W}
\end{gathered}
\] & HOLD \\
\hline
\end{tabular}

Edinburgh EDIBO Hold
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Designator & \begin{tabular}{l}
Sequence \\
Number
\end{tabular} & Path Terminator & \begin{tabular}{l}
Waypoint \\
Name
\end{tabular} & Waypoint Co-ordinates & Fly-over & \begin{tabular}{l}
Course \\
Track \({ }^{\circ} \mathrm{M}\) \\
( \({ }^{\circ} \mathrm{T}\) )
\end{tabular} & \begin{tabular}{l}
Magnetic \\
Variation
\end{tabular} & Time (MIN) & Turn Direction & \begin{tabular}{l}
Level \\
Constraint
\end{tabular} & Speed Constraint & \begin{tabular}{l}
Navigation \\
Performance
\end{tabular} \\
\hline EDIBO & - & - & EDIBO & \[
\begin{gathered}
\hline 554127.60 \mathrm{~N} \\
0030946.31 \mathrm{~W}
\end{gathered}
\] & N & \[
\begin{gathered}
354^{\circ} \\
\left(352.2^{\circ}\right)
\end{gathered}
\] & -2.0 & 1 MIN & RIGHT & \[
\begin{aligned}
& \hline-F L 140 \\
& +F L 70 \\
& \hline
\end{aligned}
\] & -230 & RNAV 1 \\
\hline
\end{tabular}

\section*{Edinburgh STIRA Hold}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Designator & Sequence Number & \begin{tabular}{l}
Path \\
Terminator
\end{tabular} & Waypoint Name & Waypoint Co-ordinates & Fly-over & \begin{tabular}{l}
Course \\
Track \({ }^{\circ} \mathrm{M}\) \\
( \({ }^{\circ}\) T)
\end{tabular} & Magnetic Variation & Time (MIN) & Turn Direction & Level Constraint & Speed Constraint & Navigation Performance \\
\hline STIRA & - & - & STIRA & \[
\begin{gathered}
\hline 560802.11 \mathrm{~N} \\
0035000.98 \mathrm{~W} \\
\hline
\end{gathered}
\] & N & \[
\begin{gathered}
235^{\circ} \\
\left(232.9^{\circ}\right) \\
\hline
\end{gathered}
\] & -2.0 & 1 MIN & RIGHT & \[
\begin{aligned}
& -F L 140 \\
& +F L 70 \\
& \hline
\end{aligned}
\] & -230 & RNAV 1 \\
\hline
\end{tabular}

\section*{Edinburgh UW Hold}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Designator & Sequence Number & Path Terminator & Waypoint Name & Waypoint Co-ordinates & Fly-over & Course Track \({ }^{\circ} \mathrm{M}\) ( \({ }^{\circ} \mathrm{T}\) ) & Magnetic Variation & Time (MIN) & Turn Direction & Level Constraint & Speed Constraint & Navigation Performance \\
\hline UW & - & - & UW & \[
\begin{gathered}
555418.55 \mathrm{~N} \\
0033009.04 \mathrm{~W} \\
\hline
\end{gathered}
\] & N & \[
\begin{gathered}
061^{\circ} \\
\left(058.7^{\circ}\right) \\
\hline
\end{gathered}
\] & -2.0 & 1 MIN & RIGHT & 3000 & -210 & RNP APCH \\
\hline
\end{tabular}

\section*{Edinburgh EDN Hold}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Designator & \begin{tabular}{l}
Sequence \\
Number
\end{tabular} & Path Terminator & Waypoint Name & Waypoint Co-ordinates & Fly-over & \begin{tabular}{l}
Course \\
Track \({ }^{\circ} \mathrm{M}\) \\
( \({ }^{\circ} \mathrm{T}\) )
\end{tabular} & Magnetic Variation & \begin{tabular}{l}
Time \\
(MIN)
\end{tabular} & Turn Direction & Level Constraint & Speed Constraint & \begin{tabular}{l}
Navigation \\
Performance
\end{tabular} \\
\hline EDN & - & - & EDN & \[
\begin{gathered}
\hline 555842.54 \mathrm{~N} \\
0031707.63 \mathrm{~W}
\end{gathered}
\] & N & \[
\begin{gathered}
241^{\circ} \\
\left(239.1^{\circ}\right)
\end{gathered}
\] & -2.0 & 1 MIN & LEFT & 3000 & -210 & RNP APCH \\
\hline
\end{tabular}

\footnotetext{
5248 - Edinburgh ACP Report 4.0
}

\section*{Appendix D - APD Validation Reports}

\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{7}{|c|}{APD VALIDATION REPORT} \\
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{Airport Name}} & Edin bugha & & & & \\
\hline & & Name & \multicolumn{3}{|c|}{Approval No} & Sianature \\
\hline \multicolumn{7}{|l|}{Validating Designer} \\
\hline \multicolumn{7}{|l|}{Requirement Correlation Matrix:} \\
\hline \multirow[t]{2}{*}{Requirement No} & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{Description of Requirement}} & \multicolumn{3}{|c|}{Compliance Status} & \multirow[t]{2}{*}{Comments} \\
\hline & & & NonCompliant & Partially Compliant & Fully Compliant & \\
\hline 1 & \multicolumn{2}{|l|}{SID LIKLA AC OPT 1} & & & \(\checkmark\) & \\
\hline 2 & \multicolumn{2}{|l|}{SID LIKLA \(1 C\) OPT 2} & & & & \\
\hline 3 & \multicolumn{2}{|l|}{SID MAVIX AC OPTA} & & & \(\checkmark\) & \\
\hline 4 & \multicolumn{2}{|l|}{SID MAVIX AC OPTZ} & & & & \\
\hline 5 & \multicolumn{2}{|l|}{SID VONE AC} & & & & \\
\hline 6 & \multicolumn{2}{|l|}{SID VOSNE \(1 D\)} & & \(\checkmark\) & & PHE35 < INM DER \\
\hline \multicolumn{2}{|c|}{Date} & \[
12 / 6 / 18
\] & & & & \\
\hline
\end{tabular}


SPECIFIC PROCEDURES
\begin{tabular}{|l|l|}
\hline Procedure Name & EVTOL \(1 C\) \\
\hline Reference Aids & DME/DME, GNSS \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline Segment Name & \begin{tabular}{c} 
Construction \\
Correct
\end{tabular} & \begin{tabular}{c} 
Obstacle \\
Clearance \\
Proven
\end{tabular} & \begin{tabular}{c} 
Dominant \\
Obstacle \\
Identified
\end{tabular} & \begin{tabular}{c} 
Minimum Altitude \\
\& MOC Declared
\end{tabular} & \begin{tabular}{c} 
Validating APD \\
Signature/lnitial
\end{tabular} \\
\hline Departure & \(\checkmark\) & & \(\checkmark\) & & \\
\hline & & & & & \\
\hline
\end{tabular}

SPECIFIC PROCEDURES
\begin{tabular}{|l|l|}
\hline Procedure Name & ARLER \(1 C\) \\
\hline Reference Aids & PME/DME, GNSS \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline Segment Name & \begin{tabular}{c} 
Construction \\
Correct
\end{tabular} & \begin{tabular}{c} 
Obstacle \\
Clearance \\
Proven
\end{tabular} & \begin{tabular}{c} 
Dominant \\
Obstacle \\
Identified
\end{tabular} & \begin{tabular}{c} 
Minimum Altitude \\
\& MOC Declared
\end{tabular} & \begin{tabular}{c} 
Validating APD \\
Signature/lnitial
\end{tabular} \\
\hline Departure & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \\
\hline & & & & & \\
\hline
\end{tabular}

SPECIFIC PROCEDURES
\begin{tabular}{|l|l|}
\hline Procedure Name & EMJEE 10 \\
\hline Reference Aids & PME/DME, GNSS \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline Segment Name & \begin{tabular}{c} 
Construction \\
Correct
\end{tabular} & \begin{tabular}{c} 
Obstacle \\
Clearance \\
Proven
\end{tabular} & \begin{tabular}{c} 
Dominant \\
Obstacle \\
Identified
\end{tabular} & \begin{tabular}{c} 
Minimum Altitude \\
\& MOC Declared
\end{tabular} & \begin{tabular}{c} 
Validating APD \\
Signature/lnitial
\end{tabular} \\
\hline Departure & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \\
\hline & & & & & \\
\hline
\end{tabular}

\section*{SPECIFIC PROCEDURES}

\begin{tabular}{|c|c|c|c|c|c|}
\hline Segment Name & \begin{tabular}{c} 
Construction \\
Correct
\end{tabular} & \begin{tabular}{c} 
Obstacle \\
Clearance \\
Proven
\end{tabular} & \begin{tabular}{c} 
Dominant \\
Obstacle \\
Identified
\end{tabular} & \begin{tabular}{c} 
Minimum Altitude \\
\& MOC Declared
\end{tabular} & \begin{tabular}{c} 
Validating APD \\
Signature/lnitial
\end{tabular} \\
\hline Departure & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \\
\hline & & & & & \\
\hline
\end{tabular}

SPECIFIC PROCEDURES
\begin{tabular}{|l|l|}
\hline Procedure Name & GRICE 5D \\
\hline Reference Aids & DME/DME, GNSS \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline Segment Name & \begin{tabular}{c} 
Construction \\
Correct
\end{tabular} & \begin{tabular}{c} 
Obstacle \\
Clearance \\
Proven
\end{tabular} & \begin{tabular}{c} 
Dominant \\
Obstacle \\
Identified
\end{tabular} & \begin{tabular}{c} 
Minimum Altitude \\
\& MOC Declared
\end{tabular} & \begin{tabular}{c} 
Validating APD \\
Signature/lnitial
\end{tabular} \\
\hline Departure & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \\
\hline & & & & & \\
\hline
\end{tabular}

SPECIFIC PROCEDURES
\begin{tabular}{|l|l|}
\hline Procedure Name & KRAGY 1D \\
\hline Reference Aids & PME/DME, GNSS \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline Segment Name & \begin{tabular}{c} 
Construction \\
Correct
\end{tabular} & \begin{tabular}{c} 
Obstacle \\
Clearance \\
Proven
\end{tabular} & \begin{tabular}{c} 
Dominant \\
Obstacle \\
Identified
\end{tabular} & \begin{tabular}{c} 
Minimum Altitude \\
\& MOC Declared
\end{tabular} & \begin{tabular}{c} 
Validating APD \\
Signature/Initial
\end{tabular} \\
\hline Departure & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \\
\hline & & & & & \\
\hline
\end{tabular}

\section*{SPECIFIC PROCEDURES}
\begin{tabular}{|lll|}
\hline Procedure Name & LIKLA \(K\) OPT 1 \\
\hline Reference Aids & PME/DME, GNSS \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline Segment Name & Construction Correct & Obstacle Clearance Proven & Dominant Obstacle Identified & Minimum Altitude \& MOC Declared & \begin{tabular}{l}
Validating APD \\
Signature/Initial
\end{tabular} \\
\hline Departure & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\int\) & \\
\hline & & & & & \\
\hline
\end{tabular}

SPECIFIC PROCEDURES
\begin{tabular}{|ll|}
\hline Procedure Name & LIKLA \(1 C\) OfR \\
\hline Reference Aids & DME/DME, GNSS \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline Segment Name & \begin{tabular}{c} 
Construction \\
Correct
\end{tabular} & \begin{tabular}{c} 
Obstacle \\
Clearance \\
Proven
\end{tabular} & \begin{tabular}{c} 
Dominant \\
Obstacle \\
Identified
\end{tabular} & \begin{tabular}{c} 
Minimum Altitude \\
\& MOC Declared
\end{tabular} & \begin{tabular}{c} 
Validating APD \\
Signature/Initial
\end{tabular} \\
\hline Departure & & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \\
\hline & & & & & \\
\hline
\end{tabular}

SPECIFIC PROCEDURES

\begin{tabular}{|c|c|c|c|c|c|}
\hline Segment Name & \begin{tabular}{c} 
Construction \\
Correct
\end{tabular} & \begin{tabular}{c} 
Obstacle \\
Clearance \\
Proven
\end{tabular} & \begin{tabular}{c} 
Dominant \\
Obstacle \\
Identified
\end{tabular} & \begin{tabular}{c} 
Minimum Altitude \\
\& MOC Declared
\end{tabular} & \begin{tabular}{c} 
Validating APD \\
Signature/Initial
\end{tabular} \\
\hline Departure & 年 & & & & \\
\hline & & & & & \\
\hline
\end{tabular}

\section*{SPECIFIC PROCEDURES}
\begin{tabular}{|l|l|}
\hline Procedure Name & MAVIX \(1 C\) OPT 2 \\
\hline Reference Aids & \(D M E / D M E\), GNSS \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline Segment Name & \begin{tabular}{c} 
Construction \\
Correct
\end{tabular} & \begin{tabular}{c} 
Obstacle \\
Clearance \\
Proven
\end{tabular} & \begin{tabular}{c} 
Dominant \\
Obstacle \\
Identified
\end{tabular} & \begin{tabular}{c} 
Minimum Altitude \\
\& MOC Declared
\end{tabular} & \begin{tabular}{c} 
Validating APD \\
Signature/Initial
\end{tabular} \\
\hline Departure & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \\
\hline & & & & & \\
\hline
\end{tabular}

SPECIFIC PROCEDURES
\begin{tabular}{|l|l|}
\hline Procedure Name & VOSNE \(R C\) \\
\hline Reference Aids & DME/DME, GNSS \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline Segment Name & \begin{tabular}{c} 
Construction \\
Correct
\end{tabular} & \begin{tabular}{c} 
Obstacle \\
Clearance \\
Proven
\end{tabular} & \begin{tabular}{c} 
Dominant \\
Obstacle \\
Identified
\end{tabular} & \begin{tabular}{c} 
Minimum Altitude \\
\& MOC Declared
\end{tabular} & \begin{tabular}{c} 
Validating APD \\
Signature/Initial
\end{tabular} \\
\hline Departure & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \\
\hline & & & & & \\
\hline
\end{tabular}

SPECIFIC PROCEDURES
\begin{tabular}{|l|l|}
\hline Procedure Name & VOSNE 1D \\
\hline Reference Aids & DME/OME, GNSS \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline Segment Name & \begin{tabular}{c} 
Construction \\
Correct
\end{tabular} & \begin{tabular}{c} 
Obstacle \\
Clearance \\
Proven
\end{tabular} & \begin{tabular}{c} 
Dominant \\
Obstacle \\
Identified
\end{tabular} & \begin{tabular}{c} 
Minimum Altitude \\
\& MOC Declared
\end{tabular} & \begin{tabular}{c} 
Validating APD \\
Signature/lnitial
\end{tabular} \\
\hline Departure & l & & \(\checkmark\) & \(\checkmark\) & \\
\hline & & & & & \\
\hline
\end{tabular}

SPECIFIC PROCEDURES
\begin{tabular}{|l|c|}
\hline Procedure Name & OMNL O6 \\
\hline Reference Aids & - \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline Segment Name & \begin{tabular}{c} 
Construction \\
Correct
\end{tabular} & \begin{tabular}{c} 
Obstacle \\
Clearance \\
Proven
\end{tabular} & \begin{tabular}{c} 
Dominant \\
Obstacle \\
Identified
\end{tabular} & \begin{tabular}{c} 
Minimum Altitude \\
\& MOC Declared
\end{tabular} & \begin{tabular}{c} 
Validating APD \\
Signature/lnitial
\end{tabular} \\
\hline Departure & l & 年 & & & \\
\hline & & & & & \\
\hline
\end{tabular}

SPECIFIC PROCEDURES
\begin{tabular}{|l|c|}
\hline Procedure Name & OMNI 24 \\
\hline Reference Aids & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline Segment Name & \begin{tabular}{c} 
Construction \\
Correct
\end{tabular} & \begin{tabular}{c} 
Obstacle \\
Clearance \\
Proven
\end{tabular} & \begin{tabular}{c} 
Dominant \\
Obstacle \\
Identified
\end{tabular} & \begin{tabular}{c} 
Minimum Altitude \\
\& MOC Declared
\end{tabular} & \begin{tabular}{c} 
Validating APD \\
Signature/nitial
\end{tabular} \\
\hline Departure & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \\
\hline & & & & & \\
\hline
\end{tabular}

\section*{General Comments}

We hereby declare that the procedures(s) as detailed COMPL I DO NOT COMPLY with the DAP CAS process requirements.
\begin{tabular}{|c|c|c|c|}
\hline & Name & Signature & Date \\
\hline DESIGNER & & \(12 / 6 / 18\) \\
\hline CHECKER & & 12 th June 2018 \\
\hline
\end{tabular}

APD VALIDATION REPORT


\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Hold & Segment Name & Construction Correct & \begin{tabular}{l}
Obstacle \\
Clearance Proven
\end{tabular} & Dominant Obstacle Identified & Minimum Altitude \& MOC Declared & Validating APD Signature/Initial \\
\hline 1 & EDIBO & \(\checkmark\) & \(\checkmark\) & \(N / A\) & \(N / A\) & \\
\hline 2 & STARA & \(\checkmark\) & \(\checkmark\) & \(N / A\) & \(N / A\) & \\
\hline 3 & EDN & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \\
\hline 4 & UW & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \\
\hline & Segment Name & Construction Correct & \begin{tabular}{l}
Obstacle \\
Clearance Proven
\end{tabular} & Dominant Obstacle Identified & Minimum Altitude \& MOC Declared & Validating APD Signature/Initial \\
\hline 1 & & & & & & \\
\hline 2 & & & & & & \\
\hline 3 & & & & & & \\
\hline 4 & & & & & & \\
\hline 5 & & & & & & \\
\hline 6 & & & & & & \\
\hline 7 & & & & & & \\
\hline
\end{tabular}

\section*{SPECIFIC PROCEDURES}
\begin{tabular}{|l|l|}
\hline Procedure Name & BLACA 1E \\
\hline Reference Aids & DME/DME, GNSS \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline Segment Name & \begin{tabular}{c} 
Construction \\
Correct
\end{tabular} & \begin{tabular}{c} 
Obstacle \\
Clearance \\
Proven
\end{tabular} & \begin{tabular}{c} 
Dominant \\
Obstacle \\
Identified
\end{tabular} & \begin{tabular}{c} 
Minimum Altitude \\
\& MOC declared
\end{tabular} & \begin{tabular}{c} 
Validating APD \\
Signature/Initial
\end{tabular} \\
\hline Arrival & \(\checkmark\) & \(\checkmark\) & \(N / A\) & \(N / A\) & \\
\hline & & & & & \\
\hline
\end{tabular}

\section*{SPECIFIC PROCEDURES}
\begin{tabular}{|l|c|}
\hline Procedure Name & BLACA 1F \\
\hline Reference Aids & \(D M E / D M E\), GNSS \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline Segment Name & \begin{tabular}{c} 
Construction \\
Correct
\end{tabular} & \begin{tabular}{c} 
Obstacle \\
Clearance \\
Proven
\end{tabular} & \begin{tabular}{c} 
Dominant \\
Ostacle \\
Identified
\end{tabular} & \begin{tabular}{c} 
Minimum Altitude \\
\& MOC declared
\end{tabular} & \begin{tabular}{c} 
Validating APD \\
Signature/nitial \\
Arrival
\end{tabular} \\
\hline & \(\checkmark\) & \(\checkmark\) & \(\mathrm{N} / \mathrm{A}\) & \(\mathrm{N} / \mathrm{A}\) & \\
\hline & & & & & \\
\hline
\end{tabular}

\section*{SPECIFIC PROCEDURES}
\begin{tabular}{|l|l|}
\hline Procedure Name & ESKDO 1E \\
\hline Reference Aids & DME/DME, GNSS \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline Segment Name & \begin{tabular}{c} 
Construction \\
Correct
\end{tabular} & \begin{tabular}{c} 
Obstacle \\
Clearance \\
Proven
\end{tabular} & \begin{tabular}{c} 
Dominant \\
obstacle \\
Identified
\end{tabular} & \begin{tabular}{c} 
Minimum Altitude \\
\& MOC declared
\end{tabular} & \begin{tabular}{c} 
Validating APD \\
Signature/lnitial
\end{tabular} \\
\hline Arrival & \(\checkmark\) & \(\checkmark\) & \(N / A\) & \(N / A\) & \\
\hline & & & & & \\
\hline
\end{tabular}

SPECIFIC PROCEDURES
\begin{tabular}{|l|l|}
\hline Procedure Name & \(H L A N E N\) IE \\
\hline Reference Aids & GNSS, \(D M E / D \mu E\) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline Segment Name & \begin{tabular}{c} 
Construction \\
Correct
\end{tabular} & \begin{tabular}{c} 
Obstacle \\
Clearance \\
Proven
\end{tabular} & \begin{tabular}{c} 
Dominant \\
Obstacle \\
Identified
\end{tabular} & \begin{tabular}{c} 
Minimum Altitude \\
\(\&\) MOC declared
\end{tabular} & \begin{tabular}{c} 
Validating APD \\
Signature/lnitial
\end{tabular} \\
\hline Arrival & \(\checkmark\) & \(\checkmark\) & \(\mathrm{N} / \mathrm{A}\) & \(\mathrm{N} / \mathrm{A}\) & \\
\hline & & & & & \\
\hline
\end{tabular}

\section*{SPECIFIC PROCEDURES}
\begin{tabular}{|l|c|}
\hline Procedure Name & PTH NE \\
\hline Reference Aids & DME/DME, GNSS \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline Segment Name & \begin{tabular}{c} 
Construction \\
Correct
\end{tabular} & \begin{tabular}{c} 
Obstacle \\
Clearance \\
Proven
\end{tabular} & \begin{tabular}{c} 
Dominant \\
Obstacle \\
Identified
\end{tabular} & \begin{tabular}{c} 
Minimum Altitude \\
\& MOC declared
\end{tabular} & \begin{tabular}{c} 
Validating APD \\
Signature/lnitial
\end{tabular} \\
\hline Arrival & \(\checkmark\) & \(\checkmark\) & \(N / A\) & \(N / A\) & \\
\hline & & & & & \\
\hline
\end{tabular}

\section*{General Comments}

We hereby declare that the procedures(s) as detailed COMPL I DO NOT COMPLY with the DAP CAS process requirements.
\begin{tabular}{|c|c|c|c|}
\hline & Name & Signature & Date \\
\hline DESIGNER & & \(12 / 06 / 18\) \\
\hline CHECKER & & \(12 / 6 / 18\) \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|c|c|}
\hline MSA & Segment Name & Construction Correct & Obstacle Clearance Proven & \begin{tabular}{l}
Dominant \\
Obstacle \\
Identified
\end{tabular} & Minimum Altitude \& MOC Declared & Validating APD Signature/Initial \\
\hline 1 & ARP/UW/EDN COMBINED & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \\
\hline 2 & & & & & & \\
\hline 3 & & & & & & \\
\hline 4 & & & & & & \\
\hline 5 & & & & & & \\
\hline 6 & & & & & & \\
\hline 7 & & & & & & \\
\hline 8 & & & & & & \\
\hline TAA & Segment Name & Construction Correct & Obstacle Clearance Proven & Dominant Obstacle Identified & Minimum Altitude \& MOC Declared & Validating APD Signature/Initial \\
\hline 1 & & & & & & \\
\hline 2 & & & & & & \\
\hline 3 & & & & & & \\
\hline 4 & & & & & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline VMC & Segment Name & Construction Correct & Obstacle Clearance Proven & Dominant Obstacle Identified & Minimum Altitude \& MOC Declared & \begin{tabular}{l}
Validating APD \\
Signature/Initial
\end{tabular} \\
\hline 1 & Total & \(\checkmark\) & \(ノ\) & \(\checkmark\) & \(\checkmark\) & \\
\hline 2 & Nof 06/24 & \(J\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \\
\hline 3 & & & & & & \\
\hline 4 & & & & & & \\
\hline VSS & Segment Name & Construction Correct & \begin{tabular}{l}
Obstacle \\
Clearance Proven
\end{tabular} & \begin{tabular}{l}
Dominant \\
Obstacle \\
Identified
\end{tabular} & Minimum Altitude \& MOC Declared & \begin{tabular}{l}
Validating APD \\
Signature/Initial
\end{tabular} \\
\hline 1 & RNAV 06 & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \\
\hline 2 & RNAV 24 & \(\checkmark\) & \(\checkmark\) & \(J\) & \(\checkmark\) & \\
\hline 3 & & & & & & \\
\hline 4 & & & & & & \\
\hline 5 & & & & & & \\
\hline 6 & & & & & & \\
\hline 7 & & & & & & \\
\hline
\end{tabular}

SPECIFIC PROCEDURES
\begin{tabular}{|l|l|}
\hline Procedure Name & RNAV RwY o6 \\
\hline Reference Aids & GNSS \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline Segment Name & Construction Correct & Obstacle Clearance Proven & \begin{tabular}{l}
Dominant \\
Obstacle \\
Identified
\end{tabular} & Minimum Altitude \& MOC declared & \begin{tabular}{l}
Validating APD \\
Signature/Initial
\end{tabular} \\
\hline Initial Approach & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \\
\hline Intermediate Approach & \(\checkmark\) & \(\checkmark\) & \(/\) & \(\checkmark\) & \\
\hline Final Approach & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \\
\hline Initial Missed Approach & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \\
\hline Intermediate Missed Approach & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \\
\hline Final Missed Approach & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \\
\hline & & & & & \\
\hline
\end{tabular}

SPECIFIC PROCEDURES

\begin{tabular}{|c|c|c|c|c|c|}
\hline Segment Name & \begin{tabular}{c} 
Construction \\
Correct
\end{tabular} & \begin{tabular}{c} 
Obstacle \\
Clearance \\
Proven
\end{tabular} & \begin{tabular}{c} 
Dominant \\
Obstacle \\
Identified
\end{tabular} & \begin{tabular}{c} 
Minimum Altitude \\
\& MOC declared
\end{tabular} & \begin{tabular}{c} 
Validating APD \\
Signature/lnitial
\end{tabular} \\
\hline Initial Approach & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \\
\hline Intermediate Approach & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \\
\hline Final Approach & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \\
\hline Initial Missed Approach & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \\
\hline Intermediate Missed Approach & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \\
\hline Final Missed Approach & \(\checkmark\) & & & & \\
\hline & & & & & \\
\hline & & & & & \\
\hline & & & & & \\
\hline
\end{tabular}

SPECIFIC PROCEDURES
\begin{tabular}{|l|l|}
\hline Procedure Name & EDIBO AC \\
\hline Reference Aids & DME/DME, GNSS \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline Segment Name & Construction Correct & Obstacle Clearance Proven & Dominant Obstacle Identified & Minimum Altitude \& MOC declared & \begin{tabular}{l}
Validating APD \\
Signature/Initial
\end{tabular} \\
\hline Arrival & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\cdots\) & \\
\hline & & & & & \\
\hline
\end{tabular}

SPECIFIC PROCEDURES

\begin{tabular}{|c|c|c|c|c|c|}
\hline Segment Name & Construction Correct & \begin{tabular}{l}
Obstacle \\
Clearance Proven
\end{tabular} & \begin{tabular}{l}
Dominant \\
Obstacle \\
Identified
\end{tabular} & Minimum Altitude \& MOC declared & \begin{tabular}{l}
Validating APD \\
Signature/Initial
\end{tabular} \\
\hline Arrival & \(\checkmark\) & 1 & \(\checkmark\) & \(\checkmark\) & \\
\hline & & & & & \\
\hline
\end{tabular}

\section*{General Comments}

We hereby declare that the procedures(s) as detailedCOMPLY IQO NOT COMPLY with the DAP CAS process requirements.
\begin{tabular}{|c|c|c|c|}
\hline & Name & Signature & Date \\
\hline DESIGNER & & \(14 / 06 / 18\) \\
\hline CHECKER & & 12 th \(J\) une 2018 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{7}{|c|}{APD Validation report} \\
\hline \multicolumn{2}{|l|}{Airport Name} & \multicolumn{5}{|l|}{EDINBoRASH} \\
\hline \multicolumn{2}{|l|}{Procedure Designer} & Name & \multicolumn{3}{|c|}{AnorovalNo} & \multirow[t]{2}{*}{Sionature} \\
\hline \multicolumn{2}{|l|}{Validating Designer} & & & & & \\
\hline \multicolumn{7}{|l|}{Requirement Correlation Matrix:} \\
\hline \multirow[t]{2}{*}{\begin{tabular}{l}
Requirement \\
No
\end{tabular}} & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{Description of Requirement}} & \multicolumn{3}{|c|}{Compliance Status} & \multirow[t]{2}{*}{Comments} \\
\hline & & & Non-
Compliant & Partially
Compliant & \[
\begin{aligned}
& \text { Fully } \\
& \text { Compliant }
\end{aligned}
\] & \\
\hline 1 & \multicolumn{2}{|l|}{ILS RWY 06} & & & \(\checkmark\) & \\
\hline 2 & \multicolumn{2}{|l|}{Loc Rwy 06} & & & \(\checkmark\) & \\
\hline 3 & \multicolumn{2}{|l|}{LLS RWY 24} & & & \(\checkmark\) & \\
\hline 4 & \multicolumn{2}{|l|}{Loc Rwy 24} & & & \(\checkmark\) & \\
\hline \multicolumn{7}{|l|}{5} \\
\hline 6 & \multicolumn{2}{|l|}{} & & & & \\
\hline D & & \(12 / 6 / 18\) & & & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline VMC & Segment Name & Construction Correct & \begin{tabular}{l}
Obstacle \\
Clearance Proven
\end{tabular} & \begin{tabular}{l}
Dominant \\
Obstacle \\
Identified
\end{tabular} & Minimum Altitude \& MOC Declared & \begin{tabular}{l}
Validating APD \\
Signature/Initial
\end{tabular} \\
\hline 1 & - & & & & & \\
\hline 2 & - & & & & & \\
\hline 3 & \(\sim\) & & & & & \\
\hline 4 & \(\cdots\) & & & & & \\
\hline VSS & Segment Name & Construction Correct & \begin{tabular}{l}
Obstacle \\
Clearance Proven
\end{tabular} & \begin{tabular}{l}
Dominant \\
Obstacle \\
Identified
\end{tabular} & Minimum Altitude \& MOC Declared & Validating APD Signature/Initial \\
\hline 1 & \(1 L S / L O C 66\) & \(\checkmark\) & \(V\) & \(\checkmark\) & \(\checkmark\) & \\
\hline 2 & \(165 / 60 C 24\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \\
\hline 3 & & & & & & \\
\hline 4 & & & & & & \\
\hline 5 & & & & & & \\
\hline 6 & & & & & & \\
\hline 7 & & & & & & \\
\hline
\end{tabular}

\section*{SPECIFIC PROCEDURES}
\begin{tabular}{|l|l|}
\hline Procedure Name & ICS RWY O6 \\
\hline Reference Aids & OW, I -VG \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline Segment Name & \begin{tabular}{c} 
Construction \\
Correct
\end{tabular} & \begin{tabular}{c} 
Obstacle \\
Clearance \\
Proven
\end{tabular} & \begin{tabular}{c} 
Dominant \\
Obstace \\
Identified
\end{tabular} & \begin{tabular}{c} 
Minimum Alitidue \\
\(\&\) Moc declared
\end{tabular} & \begin{tabular}{c} 
Validating APD \\
Signaturellnitial
\end{tabular} \\
\hline Initial Approach & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \\
\hline Intermediate Approach & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \\
\hline Final Approach & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \\
\hline Initial Missed Approach & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \\
\hline Intermediate Missed Approach & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \\
\hline Final Missed Approach & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \\
\hline & & & & & \\
\hline
\end{tabular}

\section*{SPECIFIC PROCEDURES}
\begin{tabular}{|l|l|}
\hline Procedure Name & LOC RWY 06 \\
\hline Reference Aids & UW, I-VG \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline Segment Name & \begin{tabular}{c} 
Construction \\
Correct
\end{tabular} & \begin{tabular}{c} 
Obstacle \\
Clearance \\
Proven
\end{tabular} & \begin{tabular}{c} 
Dominant \\
Obstacle \\
Identified
\end{tabular} & \begin{tabular}{c} 
Minimum Alitidue \\
\(\&\) Moc declared
\end{tabular} & \begin{tabular}{c} 
Validating APD \\
Signaturellititial
\end{tabular} \\
\hline Initial Approach & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \\
\hline Intermediate Approach & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \\
\hline Final Approach & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \\
\hline Initial Missed Approach & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \\
\hline Intermediate Missed Approach & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \\
\hline Final Missed Approach & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \\
\hline & & & & \\
\hline
\end{tabular}

\section*{SPECIFIC PROCEDURES}
\begin{tabular}{|l|l|}
\hline Procedure Name & ILS RWY 24 \\
\hline Reference Aids & EDN, 1-TH \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline Segment Name & \begin{tabular}{c} 
Construction \\
Correct
\end{tabular} & \begin{tabular}{c} 
Obstacle \\
Clearance \\
Proven
\end{tabular} & \begin{tabular}{c} 
Dominant \\
Odstale \\
Identified
\end{tabular} & \begin{tabular}{c} 
Minimum Altitude \\
\(\&\) MOc declared
\end{tabular} & \begin{tabular}{c} 
validating ApD \\
Signaturellititial
\end{tabular} \\
\hline Initial Approach & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \\
\hline Intermediate Approach & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \\
\hline Final Approach & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \\
\hline Initial Missed Approach & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \\
\hline Intermediate Missed Approach & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \\
\hline Final Missed Approach & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \\
\hline & & & & & \\
\hline
\end{tabular}

\section*{SPECIFIC PROCEDURES}
\begin{tabular}{|l|l|}
\hline Procedure Name & LOC RWY 24 \\
\hline Reference Aids & EDN, 1-TH \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline Segment Name & \begin{tabular}{c} 
Construction \\
Correct
\end{tabular} & \begin{tabular}{c} 
Obstacle \\
Clearance \\
Proven
\end{tabular} & \begin{tabular}{c} 
Dominant \\
Obstacle \\
Identified
\end{tabular} & \begin{tabular}{c} 
Minimum Altitude \\
\& MOC declared
\end{tabular} & \begin{tabular}{c} 
Validating APD \\
Signature/lnitial
\end{tabular} \\
\hline Initial Approach & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \\
\hline Intermediate Approach & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \\
\hline Final Approach & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \\
\hline Initial Missed Approach & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \\
\hline Intermediate Missed Approach & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \\
\hline Final Missed Approach & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \\
\hline & & & & & \\
\hline
\end{tabular}


We hereby declare that the procedures(s) as detailed COMPL I DO NOT COMPLY with the DAP CAS process requirements.
\begin{tabular}{|c|c|c|c|}
\hline & Name & Signature & Date \\
\hline DESIGNER & & & 12 th Jore 2018 \\
\hline CHECKER & & \(12 / 6 / 18\) \\
\hline
\end{tabular}```

