Civil Aviation Authority United Kingdom

TYPE-CERTIFICATE DATA SHEET

UK.TC.E.00084

for

BR700-710 engines Type Certificate Holder

Rolls-Royce Deutschland Ltd & Co KG Eschenweg 11 15827 Blankenfelde-Mahlow Germany

Model(s):

Issue:

Date of issue:

BR700-710A1-10 BR700-710A2-20 BR700-710C4-11 BR700-725A1-12 BR700-710D5-21 01 15 March 2024

TABLE Section	E OF CONTENTS	3
l.	General	
Section	2 BR700-710	
Ι.	General	4
1.	Type / Variant or Model	4
2.	Type Certificate Holder	4
3.	Manufacturer	4
4.	Date of Application at EASA (Certificating Authority)	4
5.	Type Certification date at EASA (Certificating Authority)	4
6.	Date of Application at CAA (Validating Authority)	5
7.	Type Certification date at CAA (Validating Authority)	5
II.	Certification Basis	6
1.	Reference Date for determining the applicable airworthiness requirements.	6
2.	State of Design Airworthiness Authority Type Certification Data Sheet Number	6
3.	State of Design Airworthiness Authority Certification Basis	6
4.	UK CAA Certification Basis	6
III.	Technical Characteristics	7
1.	Type Design Definition	7
2.	Description	8
3.	Equipment	8
4.	Dimensions	8
5.	Dry Weight	9
6.	Ratings	9
7.	Control System	9
8.	Fluids (Fuel, Oil Coolant, Additives)	9
9.	Aircraft Accessory Drives	10
10	. Maximum Permissible Air Bleed Extraction	11
IV.	Operating Limitations	13
1.	Temperature Limits	13
2.	Pressure Limits	14
3.	Rotational Speed Limits	15
4.	Installation Assumptions	15
5.	Time Limited Dispatch	15
6.	ETOPS Capability	15
V.	Operating and Service Instructions	16
VI.	Notes	17
Section	Administration	18
Ι.	Acronyms and Abbreviations	18
II.	Type Certificate Holder Record	19
III.	Amendment Record	19

Section 1 General (All Models)

I. General

This Type-Certificate Data Sheet (TCDS) is the concise definition of the type-certificated product accepted and or approved by the CAA in the UK where EASA were the Type Certificating Authority.

This TCDS includes:

- 1. Details of the type design that affect the TCDS that have been approved or accepted by the CAA in the UK from 01 January 2021.
- Details of the type design that affected the TCDS and were approved or accepted by EASA before 01 January 2021, and were incorporated into EASA TCDS EASA.E.018 at Issue 14 dated 05 December 2019 and are therefore accepted by the UK under Article 15 of Annex 30 of the UK-EU Trade and Cooperation Agreement.

Section 2 BR700-710

I. General

1. Type / Variant or Model

Type: BR700-710

Models:

BR700-710A1-10

BR700-710A2-20

BR700-710C4-11

BR700-725A1-12

BR700-710D5-21

This models are approved for use on multi-engine civil aircraft at the ratings and within the operating limitations specified below, subject to compliance with the powerplant installation requirements appropriate to approved installations.

2. Type Certificate Holder

Rolls-Royce Deutschland Ltd & Co KG

Eschenweg 11

15827 Blankenfelde-Mahlow Germany

DOA ref.: EASA.21J.065

3. Manufacturer

Rolls-Royce Deutschland Ltd & Co KG

(Formerly Rolls-Royce Deutschland GmbH, formerly BMW Rolls-Royce GmbH)

4. Date of Application at EASA (Certificating Authority)

Model	Application Date
BR700-710A1-10	16 February 1993
BR700-710A2-20	23 March 1994
BR700-710C4-11	15 January 2001
BR700-725A1-12	06 March 2006
BR700-710D5-21	12 December 2012

5. Type Certification date at EASA (Certificating Authority)

Model	Certification Date
BR700-710A1-10	14 August 1996
BR700-710A2-20	28 January 1997
BR700-710C4-11	24 June 2002
BR700-725A1-12	23 June 2009
BR700-710D5-21	28 February 2018

Models BR700-710A1-10, BR700-710A2-20, BR700-710C4-11 were previously covered under LBA Engine Type Certificate 6305 and Type Certificate Data Sheets 6305 (BR700-710A1-10 at Issue 7, BR700-710A2-20 at Issue 6, BR700-710C4-11 at Issue 1) prior to being superseded by the EASA Type Certificate and Type Certificate Data Sheet.

6. Date of Application at CAA (Validating Authority)

Model	Application Date
BR700-710A1-10	26 June 2023
BR700-710A2-20	26 June 2023
BR700-710C4-11	26 June 2023
BR700-725A1-12	26 June 2023
BR700-710D5-21	26 June 2023

7. Type Certification date at CAA (Validating Authority)

Model	Certification Date
BR700-710A1-10	15 March 2024
BR700-710A2-20	15 March 2024
BR700-710C4-11	15 March 2024
BR700-725A1-12	15 March 2024
BR700-710D5-21	15 March 2024

Note: Administrative update to include compliance to the CAEP/11 requirements.

II. Certification Basis

1. Reference Date for determining the applicable airworthiness requirements.

31 August 1993 for BR700-710A1-10, BR700-710A2-20, BR700-710C4-11, BR700-725A1-12 28 February 2015 for BR700-710D5-21

2. State of Design Airworthiness Authority Type Certification Data Sheet Number EASA.E.018

3. State of Design Airworthiness Authority Certification Basis

Refer to TCDS EASA.E.018

4. UK CAA Certification Basis

4.1 Airworthiness Standards

Model	Airworthiness Standards
BR700-710A1-10	JAR-E, Change 8
	Amendment E/91/1, effective 27.05.1991
	Amendment E/93/1, effective 17.05.1993
	Emissions and Fuel Venting: ICAO Annex 16, Volume II (Second Edition July 1993)
BR700-710A2-20	JAR-E, Change 8
	Amendment E/91/1, effective 27.05.1991
	Amendment E/93/1, effective 17.05.1993
	Emissions and Fuel Venting: ICAO Annex 16, Volume II (Second Edition July 1993)
BR700-710C4-11	JAR-E, Change 8
	Amendment E/91/1, effective 27.05.1991
	Amendment E/93/1, effective 17.05.1993
	JAR-E, Change 10, E790 Ingestion of Rain and Hail
	JAR-E, Change 10, E40(f) Rating
	Emissions and Fuel Venting: ICAO Annex 16, Volume II (Second Edition July 1993)
BR700-725A1-12	CS-E, Initial Issue dated 24 October 2003 E50 and E1030 of CS-E, Amendment 1
	dated 10 December 2007 E1040 of CS-E, Amendment 3
BR700-710D5-21	CS-E, Amendment 4 dated 12 March 2015 for the engine JAR-E, change 8 plus
	Amendments E/91/1 and E/93/1 for the Thrust Reverser

4.2 Special Conditions (SC)

Model	Special Conditions (SC)
BR700-710A1-10	Ingestion of Hail, Ingestion of Rain
BR700-710A2-20	Ingestion of Hail, Ingestion of Rain
BR700-710C4-11	None
BR700-725A1-12	None
BR700-710D5-21	None

4.3 Equivalent Safety Findings (ESF)

Model	Equivalent Safety Finding (ESF)
BR700-710A1-10	JAR-E840(a)(2) Rotor Integrity
BR700-710A2-20	JAR-E840(a)(2) Rotor Integrity
BR700-710C4-11	JAR-E840(a)(2) Rotor Integrity
BR700-725A1-12	None
BR700-710D5-21	CS-E740(b)(1) Endurance Test Schedule CS-E790(a)(1) Large Hailstone Ingestion

4.4 Deviations

Model	Deviations
BR700-710A1-10	JAR-E890(a) Engine Calibration in Reverse Thrust – Exemption
BR700-710A2-20	JAR-E890(a) Engine Calibration in Reverse Thrust – Exemption
BR700-710C4-11	JAR-E890(a) Engine Calibration in Reverse Thrust – Exemption
BR700-725A1-12	None
BR700-710D5-21	None

4.5 Environmental Protection

Model	Environmental Protection requirements.
BR700-710A1-10	CS-34 as issued by EASA Decision No. 2003/3/RM of the Executive Director of the Agency dated 17 October 2003 in accordance with environmental protection requirements, ICAO Annex 16 Volume II Amendment 7 applicable 17 November 2011. NOx standard in accordance with ICAO Annex 16 Volume II, Part III, Chapter 2, paragraph 2.3.2 e) (CAEP/8).
BR700-710A2-20	CS-34 Amendment 4 as adopted by CAA ORS9 Decision No.36 (applicable from 20 December 2023), meeting the requirement of ICAO Annex 16 Volume II, Amendment 10 applicable 1 January 2021. NOx standard in accordance with ICAO Annex 16 Volume II, Part III, Chapter 2, § 2.3.2 e) (CAEP/8). Maximum nvPM mass concentration levels in compliance with Part III, Chapter 4, paragraph 4.2.2.1. nvPM mass and number emissions in compliance with Part III, Chapter 4, paragraph 4.2.2.2 a) 1) and 4.2.2.2 b) 1) (CAEP/11 In-Production standard.
BR700-710C4-11	CS-34 Amendment 4 as adopted by CAA ORS9 Decision No.36 (applicable from 20 December 2023), meeting the requirement of ICAO Annex 16 Volume II, Amendment 10 applicable 1 January 2021. NOx standard in accordance with ICAO Annex 16 Volume II, Part III, Chapter 2, § 2.3.2 e) (CAEP/8). Maximum nvPM mass concentration levels in compliance with Part III, Chapter 4, paragraph 4.2.2.1. nvPM mass and number emissions in compliance with Part III, Chapter 4, paragraph 4.2.2.2 a) 1) and 4.2.2.2 b) 1) (CAEP/11 In-Production standard.
BR700-725A1-12	CS-34 Amendment 4 as adopted by CAA ORS9 Decision No.36 (applicable from 20 December 2023), meeting the requirement of ICAO Annex 16 Volume II, Amendment 10 applicable 1 January 2021. NOx standard in accordance with ICAO Annex 16 Volume II, Part III, Chapter 2, § 2.3.2 e) (CAEP/8). Maximum nvPM mass concentration levels in compliance with Part III, Chapter 4, paragraph 4.2.2.1. nvPM mass and number emissions in compliance with Part III, Chapter 4, paragraph 4.2.2.2 a) 1) and 4.2.2.2 b) 1) (CAEP/11 In-Production standard.
BR700-710D5-21	CS-34 Amendment 4 as adopted by CAA ORS9 Decision No.36 (applicable from 20 December 2023), meeting the requirement of ICAO Annex 16 Volume II, Amendment 10 applicable 1 January 2021. NOx standard in accordance with ICAO Annex 16 Volume II, Part III, Chapter 2, § 2.3.2 e) (CAEP/8). Maximum nvPM mass concentration levels in compliance with Part III, Chapter 4, paragraph 4.2.2.1. nvPM mass and number emissions in compliance with Part III, Chapter 4, paragraph 4.2.2.2 a) 1) and 4.2.2.2 b) 1) (CAEP/11 In-Production standard.

III. Technical Characteristics

1. Type Design Definition

The build standards are defined in the following Drawing Introduction Sheet (DIS) or later approved issues: Changes to the Engine Type Design are introduced by approved Modification Bulletins. OFFICIAL - Public. This information has been cleared for unrestricted distribution.

Model	Part Number
BR700-710A1-10	DIS 10002 ISSUE 03 or later approved issues
BR700-710A2-20	DIS 10005 ISSUE 02 or later approved issues
BR700-710C4-11	DIS 10012 ISSUE 01 or later approved issues
BR700-725A1-12	DIS 10016 ISSUE 03 or later approved issues
BR700-710D5-21	DIS 10018 ISSUE 04 or later approved issues

2. Description

The BR700-710A1-10, BR700-710A2-20, BR700-710C4-11, BR700-725A1-12, BR700-710D5-21 are two spool axial flow engines consisting of a single stage fan, a ten stage axial flow high pressure compressor, an annular combustion chamber, a two stage axial flow high pressure turbine, a two/three ⁽¹⁾ stage axial flow low pressure turbine, an accessory gearbox, a thrust reverser ⁽²⁾ and a Full Authority Digital Engine Control (FADEC).

(1) The BR700-710A1-10, BR700-710A2-20 and BR700-710C4-11 feature a two stage axial flow low pressure turbine, while the BR700-725A1-12 and BR700-710D5-21 features a three stage axial flow low pressure turbine.

(2) The BR700-725A1-12 is designed for use with a Thrust Reverser, but it is not part of the engine Type Design.

3. Equipment

Approved equipment is listed in the following RRD reports.

Model	Part Number
BR700-710A1-10	E-TR150/95-(FR), ISSUE 03 'Engine Equipment Classification' or later approved issues
BR700-710A2-20	E-TR427/96-(FR), ISSUE 01 'Engine Equipment Classification' or later approved issues
BR700-710C4-11	E-TR466/01-(FR), ISSUE 02 'Engine Equipment Classification' or later approved issues
BR700-725A1-12	See Installation Manual O-TR1458/08 or later approved issues
BR700-710D5-21	See Installation Manual EDNS 01000373100/006 or later approved issues

For details of equipment included in the type design definition: refer to the appropriate engine DIS.

4. Dimensions

Model	Overall length	Maximum Diameter
BR700-710A1-10	4669 mm	1820 mm
BR700-710A2-20	4669 mm	1820 mm
BR700-710C4-11	4660 mm	1785 mm
BR700-725A1-12	3297 mm (tip of spinner to rear of exhaust cone)	950 mm (radius from centre line measured at the lowest point of AGB)
BR700-710D5-21	4809 mm (tip of spinner to rear of thrust reverser)	980 mm (radius from centreline measured to the drains plate)

5. Dry Weight

Model	Dry Weight in Kilograms
BR700-710A1-10	1851.2
BR700-710A2-20	1891.0
BR700-710C4-11	1818.4
BR700-725A1-12	1635.2
BR700-710D5-21	1828.8

Dry weight includes thrust reverser and dressings for the BR700-710A1-10, BR700-710A2-20 and BR700-710C4-11 and dressings for the BR700-725A1-12 but excludes all fluids and all buyer furnished equipment and in the case of the BR700-725A1-12 also the thrust reverser.

6. Ratings

Models	Maximum Take Off (MTO) kN	Maximum Continuous (MCT) kN
BR700-710A1-10	65.6	64.3
BR700-710A2-20	65.6	64.3
BR700-710C4-11	68.4	64.3
BR700-725A1-12	75.2	66.6
BR700-710D5-21	67.8	63.4

Note: The ratings shown under III.6. are achieved at sea level and ISA standard day conditions using a defined test bed configuration for the air intake and exhaust system with all optional bleeds closed and the aircraft service equipment drives unloaded, at a lower fuel heating value of 43179 kJ/kg [22721 CHU/kg]. The take-off rating and associated operating limitations may be used for up to 10 minutes in the event of an engine failure or shut down.

7. Control System

The engine is equipped with a Full Authority Digital Engine Control (FADEC) system.

Model	EEC Part Number
BR700-710A1-10	1501KDC01-817 or later approved standards
BR700-710A2-20	1520KDC01-605 or later approved standards
BR700-710C4-11	1505KDC01-002 or later approved standards
BR700-725A1-12	G3010ECU01BA or later approved standards
BR700-710D5-21	G3020ECU01AE or later approved standards

8. Fluids (Fuel, Oil Coolant, Additives)

Approved fuels, additives and oils are listed in the Operating Instructions.

9. Aircraft Accessory Drives

BR700-710A1-10 (with two hydraulic pumps installed)	Direction of Rotation ⁽¹⁾	Trans- mission Ratio -	Shear Torque [Nm]	Weight [kg]	Static Overhang Moment [Nm]	Maximum Torque Extraction [Nm]
Gear Line 6 Pad (Hydr. Pump 1)	counter- clockwise	0.270	418	8.91	8.1	69
Gear Line 8 Pad (Hydr. Pump 2)	counter- clockwise	0.275	418	8.91	8.1	68
Gear Line 11 Pad (Generator)	clockwise	0.520	412.5	32.61	56.5	106
BR700-710A1-10 & BR700-710C4-11	Direction of Rotation ⁽¹⁾	Trans- mission Ratio -	Shear Torque [Nm]	Weight [kg]	Static Overhang Moment [Nm]	Maximum Torque Extraction [Nm]
Gear Line 8 Pad (Hydraulic Pump)	counter- clockwise	0.275	418	8.91	8.1	86
Gear Line 11 Pad (Generator)	clockwise	0.520	412.5	32.61	56.5	106
BR700-710A2-20	Direction of Rotation ⁽¹⁾	Trans- mission Ratio -	Shear Torque [Nm]	Weight [kg]	Static Overhang Moment [Nm]	Maximum Torque Extraction [Nm]
Gear Line 6 Pad (Hydraulic Pump)	counter- clockwise	0.335	305.1	6.54	6.1	39
Gear Line 8 Pad (Generator No. 2)	counter- clockwise	1.080	283	20.3 ⁽²⁾	32.5	50
Gear Line 11 Pad (Generator No. 1)	clockwise	1.083	283	20.3(2)	32.5	50
BR700-725A1-12	Direction of Rotation ⁽¹⁾	Trans- mission Ratio -	Shear Torque [Nm]	Weight [kg]	Static Overhang Moment [Nm]	Maximum Torque Extraction [Nm]
Hydr. Pump and Actuator	clockwise	0.261	406.75	14,82 ⁽⁴⁾	120 ⁽³⁾	16.37
IDG	clockwise	0.522	412,5	32,61 ⁽²⁾	109 ⁽³⁾	56.5
ATS	clockwise	0.988	847	9.99 ⁽²⁾	415	6.76

(1) Direction of rotation by looking normal to pad along the shaft.

(2) Dry Weight.

(3) Further details regarding acceptable loading are defined in the Installation Manual.

(4) Wet Weight.

BR700-710D5-21	Direction of Rotation	Gear Ratio to N2	Max wet Overhung Moment [Nm]	Shear Neck Value [Nm]	Maximum Torque [Nm]	Weight dry [kg]
EDP	CCW	0.2778	9.5	305.1	50.8(1)	8.48
VFG Pad 1, 4	CCW	0.8594	22.03	293 highest	50.0 ⁽¹⁾	20.29
VFG Pad 2, 3	CW	0.8978	22.03	293 highest	50.0 ⁽¹⁾	20.29

(1) Further details regarding acceptable loading are defined in the Installation Manual

10. Maximum Permissible Air Bleed Extraction

BR700-710A1-10, BR700-710A2-20, BR700-710C4-11 :

EPR=P50/P20.

The amounts of bleed extraction from stages 5 and 8, respectively, are related to the core entry mass flow, W26. The amounts of fan bleed extraction are related to the fan entry mass flow, W1A.

Stage 8 bleed extractions are cleared for operation up to and including Maximum Continuous rating.

BR700-710A1-10	Normal Flow [%]			Maximum Flow [%]		
Power Range	Stage 5	Stage 8	Fan	Stage 5	Stage 8	Fan
Idle to 1.06 EPR	None	7.8	None	3.0	12.1	0.6
1.06 to 1.3 EPR	4.4	4.2	0.2	8.3	7.9	1.6
Above 1.3 EPR	4.3	None	0.4	8.5	8.0	1.8

BR700-710A2-20	Normal Flow [%]			Maximum Flow [%]		
Power Range	Stage 5	Stage 8	Fan	Stage 5	Stage 8	Fan
Idle to 1.06 EPR	None	7.8	0.4	3.0	12.1	0.6
1.06 to 1.3 EPR	4.4	4.2	0.4	8.3	7.9	0.9
Above 1.3 EPR	4.3	None	0.4	8.5	8.0	1.1

BR700-710C4-11	Normal Flow [%]			Maximum Flow [%]		
Power Range	Stage 5	Stage 8	Fan	Stage 5	Stage 8	Fan
Idle to 1.06 EPR	None	7.7	None	3.0	12.0	0.6
1.06 to 1.3 EPR	4.3	4.1	0.2	8.2	7.8	1.6
Above 1.3 EPR	4.2	None	0.4	8.3	7.8	1.8

BR700-725A-12:

NHRT2=Mechanical HP Speed [rpm] / \sqrt{Engine} Inlet Temperature [K]

 $=NH / \sqrt{T2}$

- Stage 5 and stage 8 HP compressor customer bleed is expressed as a percentage of HP compressor entry mass flow W26.

- Fan bleed flow is expressed as percentage of the fan tip entry mass flow W12.

- Further details regarding acceptable conditions for customer bleed air extractions are defined in the installation Manual

HP Bleed Stage 5					
Nominal		Maximum			
NHRT2	% W26	NHRT2	% W26		
ldle – 675	6.5	ldle – 700	7.7		
675 – 850	10.1	700 – 875	10.1		
850 – MTO	6.5	875 – MTO	8.6		

HP Bleed Stage 8				
Nominal		Maximum	Maximum	
NHRT2	% W26	NHRT2	% W26	
ldle – 790	13.6	ldle – 800	14.1	
790 – MTO	9.3	800 – MTO	13.6	

LP (Fan) Bleed			
Nominal		Maximum	
NHRT2	% W12	NHRT2	% W12
ldle – 700	1.4	ldle – 720	1.5
700 – 775	1.7	720 – MTO	1.9
775 – MTO	1.7		

BR700-710D5-21:

Allowable Nominal bleed flows

Bleed Stage	Unit	ldle ≤ NHRT2 ≤ 980	NHRT2 > 980
Fan	%W020A	0.5	0.6
HPC stage 4	%W026	1.6	5.6
or			
HPC stage 7	%W026	9.9	9.2

Allowable Maximum bleed flows

Bleed Stage	Unit	Idle ≤ NHRT2 ≤ 980	NHRT2 > 980
Fan	%W020A	0.5	0.6
HPC stage 4	%W026	1.6	7.3
or			
HPC stage 7	%W026	11.7	10.8

A constant percentage of 1.6%W026 is supplied by HPC stage 4 bleed across the full NHRT2 range.

For NHRT2 \leq 980 only stage 7 bleed can be extracted up to the illustrated levels in addition to the stated 1.6%W026 supplied by HPC stage 4 bleed.

For NHRT2 > 980 either HPC stage 4 or stage 7 can be extracted up to the illustrated levels.

Simultaneous extraction of HPC stage 4 beyond the stated 1.6%W026 and stage 7 bleed is not permitted.

NHRT2 = Mechanical HP Speed [rpm] $I \sqrt{Engine Inlet Temperature [K]}$

 $= NH / \sqrt{T2}$

Stage 4 and stage 7 HP compressor customer bleed is expressed as a percentage of HP compressor entry mass flow W026.

Fan bleed flow is expressed as percentage of the total fan face entry mass flow W020A.

Further details regarding acceptable conditions for customer bleed air extractions are defined in the Installation Manual.

IV. Operating Limitations

1. Temperature Limits

1.1. Turbine Gas Temperature (TGT) – Trimmed in Degree Centigrade.

	BR700-710A1-10 BR700-710A2-20 BR700-710C4-11	BR700-725A1-12	BR700-710D5-21
Maximum prior to starting on the ground	150	150	150
Starting on ground	700	700	700
Starting in flight	850	850	850
Maximum Take-off ⁽¹⁾	900	900	890
Take-off (transient 2 min.)	N/A	N/A	900
Maximum Continuous	860	885	850
Maximum Overtemperature (20 sec)	905	920	915 (see Note)

(1) Limited to 5 minutes and to maximum 10 minutes after one engine having failed.

Note: The BR700-725A1-12 engine is approved for a maximum exhaust gas over temperature of 920°C, BR700-710D5-21 engine 915°C for inadvertent use for periods up to 20 seconds without requiring maintenance action. The cause of the over temperature must be investigated and recorded.

1.2. Fuel Temperature

3R700-710A1-10, BR700-710A2-20, BR700-710C4-11, BR700-725A1-12, BR700-710D5-21				
	Fuel Temperature (°C)			
LP Pump Inlet, maximum	54 (at sea level)			
LP Pump Inlet, 51000 ft ⁽¹⁾	47			
Minimum fuel temperature.	Minus 40 within the Take-Off envelope/ Minus 45 outside the Take-Off envelope			

(1) The maximum engine fuel inlet temperature at altitude below 51000ft are derived by linear interpolation between the values given for sea level and 51000ft.

1.3. Oil Temperature

	BR700-710A1-10	BR700-710A2-20	BR700-710C4-11	BR700-725A1-12 BR700-710D5-21
Minimum for engine starting (°C)	minus 30	minus 40 ⁽¹⁾	minus 30	minus 40
Minimum for acceleration to Take Off (°C)	20	20	20	20
Maximum for unrestricted use (°C)	160	160	160	160

(1) For temperature below minus 30 Degree Centigrade see OI-710-2BR Operating Instructions.

2. Pressure Limits

2.1. Fuel Pressure

Fuel Pressure – kPa					
3R700-710A1-10, BR700-710C4-11, BR700-710A2-20, BR700-725A1-12, BR700-710D5-21					
Minimum at LP Pump Inlet	34.5				

2.2. Oil Pressure (Differential Oil Pressure)

Lower limit for flight in the range:

BR700-710A1-10, BR700-710C4-11, BR700-710A2-20, BR700-725A1-12, BR700-710D5-21					
Idle to 72.3% N2	241.2 kPa				
72.5% N2 to 90% N2	Straight Line Interpolation from 241.2 kPa to 310.3 kPa				
Above 90% N2	310.3 kPa				

Minimum to Complete Flight in the range:

BR700-710A1-10, BR700-710C4-11, BR700-710A2-20, BR700-725A1-12, BR700-710D5-21					
Idle to 72.3% N2	172.3 kPa				
72.5% N2 to 90% N2	Straight Line Interpolation from 172.3 kPa to 241.2 kPa				
Above 90% N2	241.2 kPa				

3. Rotational Speed Limits.

Maximum Permissible Low Pressure Turbine N1 Rotor Speeds in %	BR700- 710A1-10	BR700- 710A2-20	BR700- 710C4-11	BR700- 725A1-12	BR700- 710D5-21
Reference speeds rpm (%)	7431(100%)	7431(100%)	7431(100%)	7000(100%)	7431(100%)
Maximum for Take-off %	101.1%	102.1%	101.1%	102.8%	102.1%
Maximum Over-speed (20- second limit) %	101.5%	102.5%	101.5%	104.3%	103.3%
Maximum Continuous %	101.0%	102.1%	101.0%	102.8%	102.1%
Reverse Thrust (maximum 30 sec.) %	70.0%	70.0%	70.0%	78.1%	70.4%

Maximum Permissible	BR700-	BR700-	BR700-	BR700-	BR700-
High Pressure Turbine N2	710A1-10	710A2-20	710C4-11	725A1-12	710D5-21
Rotor Speeds in %					
Reference speeds rpm (%)	15898(100%)	15898(100%)	15898(100%)	15898(100%)	19000(100%)
Maximum for Take-off %	99.6%	99.6%	99.6%	100.0%	101.6%
Maximum Over-speed (20- second limit) %	99.8%	99.8%	99.8%	101.3%	102.8%
Maximum Continuous %	98.9%	98.9%	98.9%	98.7%	99.9%

4. Installation Assumptions

Refer to Installation Manuals for details.

5. Time Limited Dispatch

Information on engine operation with FADC system dispatch limitations is contained in the respective Engine Operating Instructions and Time Limited Manuals.

6. ETOPS Capability

The BR700-725A1-12 engine is approved for ETOPS capability in accordance with CS-E1040 amendment 3 by EASA Approval 10059805 for a Maximum Approved Diversion Time of 180 minutes at Maximum Continuous thrust. This approval does not constitute an approval to conduct ETOPS operations.

V. Operating and Service Instructions

Manuals	BR700- 710A1-10	BR700-710A2- 20	BR700-710C4- 11	BR700-725A1- 12	BR700-710D5- 21
Installation Manual	E-TR206/95 Issue 6 or later approved issues	E-TR364/95 Issue 1 or later approved issues	E-TR240/01(FR) ISS02 or later approved issues	O-TR1458/08 Issue 2 or later approved issues	EDNS 01000373100/0 08 or later approved issues
Operating Instructions	OI-710-1BR	OI-710-2BR	OI-710-4BR	OI-725-7BR	OI-710-8BR
Instructions for Continued Airworthiness (ICA)					
Engine Manual	E-710-1BR	E-710-1BR	E-710-1BR	E-710-1BR	E-710-8BR
Time Limits Manual	T-710-1BR	T-710-1BR	T-710-1BR	T-710-1BR	T-710-8BR
Maintenance Manual	M-710-1BR	M-710-2BR	M-710-4BR	M-725-7BR	M-710-8BR
Service Bulletins	As issued by Rolls-Royce Deutschland Ltd. & Co. KG.	As issued by Rolls-Royce Deutschland Ltd. & Co. KG.	As issued by Rolls-Royce Deutschland Ltd. & Co. KG.	As issued by Rolls-Royce Deutschland Ltd. & Co. KG.	As issued by Rolls-Royce Deutschland Ltd. & Co. KG.

For BR700-710C4-11 Engines with Modification 72-101466 incorporated E-TR0283/06 Issue01 or later approved issue and the Service Bulletin SB-BR700-72-101466 apply additionally

VI. Notes

1. The engines are equipped with a thrust reverser (which is not part of the engine design) with the following part numbers:

	BR700-	BR700-	BR700-	BR700-	BR700-
	710A1-10	710A2-20	710C4-11	725A1-12	710D5-21
Left Hand Engine	P/N04G0001- 039 or later approved standards	P/N07G0001- 005 or later approved standards	P/N25G0001- 001 or later approved standards	P/N RD00103001-1 or later approved	P/N 29G0001- 021 or later approved
	otariaarao	Standardo	otandardo	standards	standards
Right Hand Engine	P/N04G0001- 041 or later approved standards	P/N07G0001- 007 or later approved standards	P/N25G0001- 003 or later approved standards	P/N RD00103001-2 or later approved standards	P/N 29G0001- 023 or later approved standards
Operation of these thrust rev	versers is app	roved for grou	nd use only.		
Power back is prohibited.					

- 2. The EASA (Certificating Authority) approved Airworthiness Limitation Section of the Instructions for Continued Airworthiness is published in the applicable Time Limits Manual.
- 3. The EEC software has been developed and verified in accordance with RTCA/DO-178B respectively ED-12B, Level A.
- 4. Information on lightning protection and electromagnetic compatibility is contained in the Installation Requirements Document.
- 5. The ratings shown under III.6. are achieved at sea level and ISA standard day conditions using a defined test bed configuration for the air intake and exhaust system with all optional bleeds closed and the aircraft service equipment drives unloaded, at a lower fuel heating value of 43179 kJ/kg [22721 CHU/kg]. The take-off rating and associated operating limitations may be used for up to 10 minutes in the event of an engine failure or shut down.
- Models BR700-710A1-10, BR700-710A2-20, BR700-710C4-11 were previously covered under LBA Engine Type Certificate 6305 and Type Certificate Data Sheets 6305 (BR700-710A1-10 at Issue 7, BR700-710A2-20 at Issue 6, BR700-710C4-11 at Issue 1) prior to being superseded by the EASA Type Certificate and Type Certificate Data Sheet.
- 7. The BR700-725A1-12 engine is approved for a maximum exhaust gas over temperature of 920°C, BR700-710D5-21 engine 915°C for inadvertent use for periods up to 20 seconds without requiring maintenance action. The cause of the over temperature must be investigated and recorded.
- 8. The BR700-725A1-12 engine is approved for ground operation in freezing fog conditions down to minus 20°C, BR700-710D5-21 down to minus 19°C.
- 9. Deleted (refer to section 1.5 Environmental Protection).
- 10. "Pearl 15" is the marketing name for the BR700-710D5-21 engine model.

Section 3 Administration

I. Acronyms and Abbreviations

Acronym / Abbreviation	Definition
ARINC	Aeronautical Radio, Incorporated
AGB	Accessories Gearbox
CNA	Common Nozzle Assembly
DIS	Drawing Introduction Sheet
EASA	European Union Aviation Safety Agency
ESF	Equivalent Safety Finding
EBU	Engine Build Unit
EEC	Engine Electronic Controller
EMI	Electro Magnetic Interference
FADEC	Full Authority Digital Engine Control
HP	High Pressure
ICAO	International Civil Aviation Organisation
IDG	Integrated Drive Generator
IP	Intermediate Pressure
LP	Low Pressure
rpm	Revolutions per Minute
SC	Special Conditions
TCDS	Type Certificate Data Sheet
ТС	Type Certificate
TGT	Turbine Gas Temperature
CAA	Civil Aviation Authority

II. Type Certificate Holder Record

TCH Record

Rolls-Royce Deutschland Ltd & Co KG Eschenweg 11, 15827 Blankenfelde-Mahlow Germany Period

Since initial issue

Design Organisation Approval No.: EASA.21J.065

III. Amendment Record

TCDS	TCDS Issue	Changes	TC Issue and
Issue No.	Date		Date
01	15 Mar 2024	 Section 1 is added to provide explanatory notes about the details of the type design that affect the TCDS, that have been approved or accepted by the CAA in the UK from 01 January 2021 and that the design changes accepted by EASA before 01 January 2021 were incorporated into EASA TCDS EASA.E.018 at Issue 14 dated 05 December 2019 were therefore accepted by the UK under Article 15 of Annex 30 of the UK-EU Trade and Cooperation Agreement. Section 2 (II) (1), (2), (3), and (4) added to provide information about certifying authority and certification basis applied by the certificating authority. Section 2 (II) (4.5) updated with regards to the certification basis for environmental protection CAEP/11 BR700-725A1-12 Technical Characteristics – new hydraulic pump standard -approved by EASA as a Major (non-significant) Change Approval 10081366 and recording of the latest DIS 10016 Issue 03 – EASA Major (non-significant) Change Approval 10082991. 	Issue 01 15 Mar 2024

– END –